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Preface

The complexity of genome evolution poses many exciting challenges to develop-
ers of mathematical models and algorithms, who have recourse to a spectrum of
algorithmic, statistical and mathematical techniques, ranging from exact, heuris-
tic, fixed-parameter and approximation algorithms for problems based on parsi-
mony models to Monte Carlo Markov Chain algorithms for Bayesian analysis of
problems based on probabilistic models.

The annual RECOMB Satellite Workshop on Comparative Genomics
(RECOMB Comparative Genomics) is a forum on all aspects and components of
this field, ranging from new quantitative discoveries about genome structure and
process to theorems on the complexity of computational problems inspired by
genome comparison. The informal steering committee for this meeting consists
of David Sankoff, Jens Lagergren and Aoife McLysaght.

This volume contains the papers presented at the 3rd RECOMB Comparative
Genomics meeting, which was held in Dublin, Ireland, on September 18–20, 2005.
The first two meetings of this series were held in Minneapolis, USA (2003) and
Bertinoro, Italy (2004).

This year, 21 papers were submitted, of which the Program Committee se-
lected 14 for presentation at the meeting and inclusion in this proceedings. Each
submission was refereed by at least three members of the Program Committee.
After completion of the referees’ reports, an extensive Web-based discussion took
place for making decisions. The RECOMB Comparative Genomics 2005 Program
Committee consisted of the following 27 members: Vineet Bafna, Anne Berg-
eron, Mathieu Blanchette, Avril Coghlan, Dannie Durand, Nadia El-Mabrouk,
Niklas Eriksen, Aaron Halpern, Rose Hoberman, Daniel Huson, Jens Lagergren,
Giuseppe Lancia, Emmanuelle Lerat, Aoife McLysaght, Istvan Miklos, Bernard
Moret, Pavel Pevzner, Ben Raphael, Marie-France Sagot, David Sankoff, Cathal
Seoighe, Beth Shapiro, Igor Sharakhov, Mike Steel, Jens Stoye, Glenn Tesler
and Louxin Zhan. We would like to thank the Program Committee members for
their dedication and hard work.

RECOMB Comparative Genomics 2005 had several invited speakers, includ-
ing: Anne Bergeron (Université du Québec à Montreal, Canada), Laurent Duret
(Laboratoire de Biometrie et Biologie Evolutive, Université Claude Bernard,
Lyon, France), Eddie Holmes (Department of Biology, Pennsylvania State Uni-
versity, USA), Jeffrey Lawrence (Department of Biological Sciences, University of
Pittsburgh, USA), Stephan Schuster (Department of Biochemistry and Molecu-
lar Biology, Pennsylvania State University, USA), Ken Wolfe (Genetics Depart-
ment, Trinity College Dublin, Ireland) and Sophia Yancopoulos (Institute for
Medical Research, New York, USA).

In addition to the invited talks and the contributed talks, an important in-
gredient of the program was the lively poster session.



VI Preface

RECOMB Comparative Genomics 2005 would like to thank Science Founda-
tion Ireland (SFI) and Hewlett-Packard for providing financial support for the
conference. We would like to thank the University of Dublin, Trinity College, for
hosting the meeting. We would like to thank Nadia Browne for administrative
support.

In closing, we would like to thank all the people who submitted papers and
posters and those who attended RECOMB Comparative Genomics 2005 with
enthusiasm.

September 2005 Aoife McLysaght and Daniel Huson
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Lower Bounds for Maximum Parsimony with

Gene Order Data

Abraham Bachrach, Kevin Chen, Chris Harrelson, Radu Mihaescu,
Satish Rao, and Apurva Shah

Department of Computer Science,
UC Berkeley

Abstract. In this paper, we study lower bound techniques for branch-
and-bound algorithms for maximum parsimony, with a focus on gene or-
der data. We give a simple O(n3) time dynamic programming algorithm
for computing the maximum circular ordering lower bound, where n is
the number of leaves. The well-known gene order phylogeny program,
GRAPPA, currently implements two heuristic approximations to this
lower bounds. Our experiments show a significant improvement over both
these methods in practice. Next, we show that the linear programming-
based lower bound of Tang and Moret (Tang and Moret, 2005) can be
greatly simplified, allowing us to solve the LP in O∗n3) time in the
worst case, and in O∗(n2.5) time amortized over all binary trees. Fi-
nally, we formalize the problem of computing the circular ordering lower
bound, when the tree topologies are generated bottom-up, as a Path-
Constrained Traveling Salesman Problem, and give a polynomial-time
3-approximation algorithm for it. This is a special case of the more gen-
eral Precedence-Constrained Travelling Salesman Problem and has not
previously been studied, to the best of our knowledge.

1 Introduction

Currently, the most accurate methods for phylogenetic reconstruction from gene
order data are based on branch-and-bound search for the most parsimonious
tree under various distance measures. These include GRAPPA [1], BP-Analysis
[2], and the closely-related MGR [3]. Since branch-and-bound for this problem
is potentially a super-exponential-time process, computing good pruning lower
bounds is very important. However, scoring a particular partial or full tree topol-
ogy is a hard computational problem for many metrics, in particular for gene
order data.

There has been a good deal of recent work on designing good lower bounds
for various distance measures. These techniques are divided between those spe-
cially designed for specific distance measures [4–6] and those that hold for arbi-
trary metrics [7–9]. Our lower bounds fall into the latter category. Lower bounds
that hold for arbitrary metrics are particularly appealing in the context of gene
order phylogeny, because an important direction for the field is to extend cur-
rent methods to use more realistic metrics than the breakpoint or inversion dis-
tances currently used. There is a growing body of algorithmic work on various

A. McLysaght et al. (Eds.): RECOMB 2005 Ws on Comparative Genomics, LNBI 3678, pp. 1–10, 2005.
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2 A. Bachrach et al.

distance measures, including transpositions, chromosome fusions/fissions, inser-
tions/deletions and various combinations of these (see [10] for a comprehensive
survey) and our lower bounds apply to all of them. One notable exception to
this is the tandem duplication and random loss model [11], which is well-suited
to animal mitochondrial genomes, but is asymmetric and therefore does not fit
into the standard metric parsimony framework.

In this paper, we give efficient implementations of two lower bounds. The first
is a simple dynamic programming algorithm to compute the maximum circular
ordering lower bound in O(n3) time and O(n2) space. Since the exact running
time of the algorithm often depends on the choice of root, we also provide an
algorithm to compute the optimal root for a given un-rooted tree topology in
O(n2) time. Next, we greatly simplify the LP-based lower bound of [9] and
show how to implement it in O∗(n3) time1 in the worst case and O∗(n2.5) time
amortized over all binary trees. Finally, we study the problem of lower bounding
the tree score when the only a partial topology has been constructed so far
and rephrase this as a Path-Constrained Travelling Salesman Problem. This is
a special case of the Precedence-Constrained Travelling Salesman Problem [12],
in which we are given a partial order graph on a subset of the cities and asked
to return a min cost tour that respects the partial ordering. Our version of the
problem is simply the case where the partial order graph is a directed path. To
our knowledge, considering the effect of a restricted partial order on this problem
has not been previously studied, and we give a simple and fast algorithm that
computes a 3-approximation for the case of a line. The solution can then be
transformed into a lower bound by dividing the score by 3.

Finally, we have implemented our dynamic programming lower bound and
show that it gives better results on the benchmark Campanulaceae data set.

2 The Circular Ordering Lower Bound

Given a rooted binary tree in which one of each pair of children is designated
the left child and the other the right child, consider the left-to-right ordering of
the leaves, π, induced by some depth-first search of the tree. For a given metric
d(·) on pairs of leaves, say the inversion distance, we define the circular ordering
lower bound to be C(π) =

∑n
i=1 d(π(i), π(i+1)), where we define π(n+1) = π(1)

for notational convenience. By repeatedly invoking the triangle inequality, it is
easy to see that C(π)

2 is a lower bound on the cost of the tree, and the bound is
tight if the distance d(·) is the shortest path metric induced by the tree.

The same tree topology can induce more than one leaf ordering π by swapping
left child and right children at internal nodes of the tree, and some leaf order-
ings may produce a higher lower bound that others. A brute-force exponential
time algorithm for computing the maximum circular ordering is to enumerate all
possible combinations of swaps at internal nodes. This method has been consid-
ered too expensive to work well in practice [13]. Two heuristic approximations

1 The notation O∗(f(n)) omits factors that are logarithmic in n.
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are implemented in GRAPPA. The first is the Swap-as-you-go heuristic [7], in
which a DFS traversal of the tree is performed, and a swap performed at each
internal node when it is visited as long as it improves the lower bound. This
heuristic has the attribute of running in linear time.

The second heuristic does a similar traversal, but when deciding whether to
swap the left and right children of an internal node, the algorithm tries both
of them, and keeps the one which gives the better lower bound for the current
subproblem. This latter approach runs in O(n4) time.

In this section, we show that, in fact, the maximum cicular ordering for a
given tree can be computed in O(n3) time by a straightforward dynamic pro-
gramming algorithm. We first note that the choice of the tree’s root does not
affect the parsimony score or the maximum circular ordering lower bound. Since
the branch-and-bound algorithm searches over unrooted topologies, for the pre-
sentation of the algorithm we assume an arbitrarily chosen root. On the other
hand, the exact running time of our algorithm will depend on the position of the
root, so we also consider the problem of optimal root placement after giving the
description of the algorithm.

At each internal node, v, let Sv be the set of leaves in the subtree rooted at
v. The dynamic programming algorithm constructs a table Mv which contains,
for each pair of leaves A, B ∈ Sv, the maximum score attainable by a linear
ordering of the vertices in Sv that begins with A and ends with B, if one exists.
Note that such an ordering exists if and only if A and B are leaves in subtrees
rooted at different children of v.

Let the children of v be l and r. We inductively assume that the tables M(r)
and M(l) have already been constructed. Let ll and lr be l’s children and rl and
rr be r’s children, and let us assume that the subtrees rooted at ll, lr, rl and
rr have a, b, c and d leaves respectively (if r or l are leaves, then this step may
be omitted). Intuitively, we could construct M(v) by considering all possible
quartets of leaves A ∈ Sll, B ∈ Slr, C ∈ Srl and D ∈ Srr. We will then perform
O(abcd) operations at node v, which would lead to a running time of O(n4) for
the whole tree.

We can do better than this naive implementation in the following way. Let
A ∈ Sll and C ∈ Srl. Let

δ(A, C) = max
B∈Slr

[Ml(A, B) + d(B, C)]. (1)

So δ(A, C) is the highest score attainable by a linear ordering of the leaves in Sl

which also takes a final step to C. Now for D ∈ Srr we obtain

Mv(A, D) = max
C∈Srl

[δ(A, C) + Mr(C, D)]. (2)

The maximum circular ordering lower bound is given at the root by the
expression

max
A∈Sl,D∈Sr

[Mv(A, D) + d(A, D)]
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2.1 Analyzing the Running Time

To analyze the running time of the algorithm, assume inductively that the time
to process an n-leaf tree is O(n3). Keeping the notation as before, at a given
node v, by induction, it takes O((a + b)3) time to compute the table Ml and
O((c + d)3)time to compute Mr. We need to show that the time to compute the
table Mv is O((a + b + c + d)3), since a + b + c + d is the number of leaves in the
subtree rooted at v.

To complete the computation of equation 1 for every pair A ∈ Sll, C ∈ Srl

(there are ac of them), we need O(b) time and to complete the computation
in Equation 2 for all ad pairs A ∈ Sll, D ∈ Srr we need O(c) time per pair.
The running time to compute the entries Mv(A, D) with A ∈ Sll and D ∈
Srr is therefore O(abc + acd). Of course we need to do this for all possible
choices of subtrees of l and r, therefore the total running time at node v will be
O(abc + acd + abd + bcd) = O((a + b + c + d)3).

Observe that at each step we are keeping one table of size O(ab) for a node
with a leaves under its left child and b leaves under its right child. A similar
identical to the one above proves that the space needed for building a tree on n
leaves is at most O(n2). This proves the following theorem:

Theorem 1. There exists an O(n3)-time, O(n2)-space algorithm for computing
the maximum circular ordering lower bound.

The worst case time and space are achieved by a balanced binary tree. Con-
versely, the best running time for the algorithm is achieved when the tree is a
caterpillar. In this case, the running time is only O(n2).

Up to now, we have placed the root arbitrarily. However, observe that the
choice of the root can affect the running time of the algorithm. For example,
consider a rooted tree consisting of a root node with four grandchildren, where

A B C D

Fig. 1. Each of the shaded triangles A, B, C represent a caterpillar on O(n) leaves,

while D is the singleton tree
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three of the four subtrees rooted at the grandchildren are caterpillars with n
leaves (Figure 1) and the fourth one is a singleton leaf.

The running time for this rooting is Ω(n3). However, if we root the tree
somewhere inside C, then the running time becomes O(n2).

The optimal choice of root can be found easily in O(n2) time simply by
considering each of the possible root placements in turn, and traversing the tree
in depth-first search order, starting at each root, to compute the running time
that the algorithm would need if that particular rooting were chosen. Since this
algorithm’s running time s O(n2), we can run it first to choose the root without
increasing the overall asymptotic running time of O(n3).

It is easily seen that for a balanced binary tree, one can never do better than
Ω(n3) regardless of the rooting. However, it is not clear what is the average
running time of the algorithm for an optimal rooting across the set of all trees.
We leave answering this question as an open problem.

3 An LP-Based Lower Bound

A recent paper by Tang and Moret gives an alternative lower bound for general
metrics based on linear programming [9]. In their LP, there is a variable xe for
each tree edge, e, which corresponds to the length of the edge, and a variable
yi,j for each pair of non-leaf vertices i, j at distance 2 in the tree (in terms of
edges), corresponding to the distance between these two vertices. If i and j are
leaves, we define yi,j = d(i, j).

The object is to minimize the sum of the xe subject to triangle inequality
constraints and perfect median constraints. There is one perfect median con-
straint for each internal vertex v. Let i, j, k be the three neighbors of this vertex.
The sum of the edge lengths of the three edges adjacent to v is constrained to
be equal to yi,j+yj,k+yk,i

2 , which essentially says that the circular ordering lower
bound for the local subtree around each internal vertex is tight - hence the term
perfect median. The motivation for this constraint is an empirical observation
that in many practical situations, many of the perfect median constraints are
indeed satisfied. In addition to these constraints, there are also two triangle in-
equality constraints for each pair of leaves i, j, in which two paths made up of
sums of x and y variables between the leaves are constrained to be at least the
measured distance between the two leaves, d(i, j) (the choice of the two paths is
not deterministically given in the paper).

In this section, we show that this LP is equivalent to the following very
simple LP, which has appeared previously in the literature (e.g. [14]). We do
away completely with the y variables and keep only the x variables. Let L be
the set of leaves of the tree, path(i, j) be the (unique) shortest path from i to
j in the tree, and d(i, j) be the measured distance between i and j (e.g., d(i, j)
could be the inversion distance between i and j). The LP, which we call the
triangle inequality LP is:
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min
∑
e∈E

xe

subject to

∀i, j ∈ L
∑

e∈path(i,j)

xe ≥ dij

∀e xe ≥ 0

Theorem 2. The LP of Tang and Moret is equivalent to the triangle inequality
LP.

Proof. To show equivalence between the two LP’s, we need to prove that all
constraints in the LP of Tang and Moret that involve y variables can always
be satisfied by a solution that satisfies all the constraints that involve only x
variables (i.e. the triangle inequality LP). We consider two cases separately:
first, at interior nodes with at most one neighbor that is a leaf, second, at interior
nodes with exactly two neighbors that are leaves. For trees with more than three
leaves, there are no other cases to consider, and for a tree with three leaves the
theorem is trivial.

– Case 1: Given a solution to the triangle inequality LP, at an interior node
v with neighbors i, j, k, none of which are leaves, we can just set the yij

variable to be the sum of x{i,v} and x{j,v}, and likewise for yjk and yki. This
satisfies both the perfect median constraint for this interior node and any
triangle inequality constraints involving yij , yjk or yki.
If one of the tree is a leaf, the same argument holds, since the triangle
inequality with respect to two leaves cannot be violated.

– Case 2: At an interior node v with adjacent leaves i, j and a third adjacent
node k, this may not be possible to proceed as in case 1 in general, because
d(i, j) could be smaller than the sum of x{i,v} and x{j,v}. But to compensate,
we can simply increase the other two y variables by the appropriate amount
in order to satisfy the perfect median constraint, and this will still satisfy
the relevant triangle inequality constraints. Note that this would in principle
violate local triangle inequality constraints between i and k and between j
and k, but these constraints are not included in the LP of Tang and Moret.
(If they were included, then the LP would not be satisfiable by the most
parsimonious tree, so its use as a lower bound would be in question.)

��

Next we observe that our simpler LP has another attribute: it has the form
of a pure covering LP, for which many efficient approximation schemes exist.
For example, we can apply the algorithm of [15], which solves the LP to within
a factor of 1 + ε in time O∗( 1

ε2 m) where m is the number of non-zero entries
in the constraint matrix. We can always divide the solution by 1 + ε to get a
lower bound on the tree score. We further note that the algorithm of [15] is
quite simple and practical to implement, and does not require any fancy linear
programming machinery.



Lower Bounds for Maximum Parsimony with Gene Order Data 7

Note that m is the sum of the path lengths between all pairs of leaves in the
tree and ranges from n2 log(n) for a complete binary tree to n3 for a caterpiller.
In general, m can be bounded by the product of the number of constraints, n2,
and the height of the tree. Using a classical result of Flajolet and Odlyzko, which
states that the height of a random binary tree is O(

√
n) [16], also observe that

solving the LP takes O∗(n2.5) per tree, amortized over all trees with n leaves.
These results are summarized in the following theorem.

Theorem 3. The linear program 3 can be solved in O∗(n3) time in the worst
case and O∗(n2.5) time amortized over all trees.

Also, note that while the LP-based algorithm is fastest on balanced trees,
the dynamic programming algorithm is fastest on unbalanced trees. Hence, we
can optimize the running time (although not asymptotically) by first computing
the running time for the two algorithms and running the lower of the two.

4 The Path-Constrained Traveling Salesman Problem

The current implementation of GRAPPA generates each possible full tree topol-
ogy and computes the circular ordering lower bound for it in order to determine
whether to proceed with a full scoring. This strategy can be improved by gen-
erating trees bottom-up instead, inserting leaves one at a time into a partial
topology, and computing the circular ordering lower bound on the partial topol-
ogy. It is easy to see that a lower bound on a partial topology is a valid lower
bound on any extension of it into a full tree. In this way, entire subtrees of the
branch-and-bound recursion tree can be pruned at an earlier stage.

When such a bottom-up strategy is adopted, the problem of computing a circu-
lar ordering that is consistent with the partial tree can be rephrased as a
Precedence-Constrained Travelling Salesman Problem. Here, we are asked to pro-
duce a min-cost tour of a set of cities that respect a set of precedence constraints in
the form of a directed acyclic graph (DAG). This problem has been studied in [12],
in which hardness results were given for the special cases of metrics induced by a
line or hypercube, suggesting that the problem is hard in many practical instances.

For our application, we are interested in specializing not the metric, but the
constraint graph. In contrast to [12], our special case is easy to approximate. In
general, the problem of computing a maximum circular ordering lower bound
can be seen as a version of TSP. Given a partial topology, a maximum linear
ordering on this topology induces a constraint graph in which the DAG is a
directed path. Clearly, Path-Constrained TSP is NP-hard since it contains TSP
as a special case. However, we are able to prove the following result:

Theorem 4. There exists an 3-approximation for the path-constrained travel-
ling salesman problem that runs in the same time as computing a minimum
spanning tree on the given metric on the leaves.

Proof. We will call the edges and vertices of the constraint graph constraint
edges and constraint vertices respectively. First, take the complete graph on the
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n vertices with the distance d(i, j) on the edge from i to j and form a new
graph by adding an auxiliary vertex x with 0-weight edges connected to each of
the constraint vertices. Find a minimum spanning tree in this new graph. The
optimal solution will contain the 0-weight edges, plus a tree growing from each of
the constraint vertices. Discarding the 0-weight edges and the auxiliary vertex x,
we have a forest where each tree contains exactly one of the constraint vertices.
We produce a travelling salesman tour of each tree by following an Euler tour of
the spanning tree. The sum of the tree costs is a lower bound on OPT because
the optimal solution must have a path between consecutive constraint vertices,
and removing the last edge on each of these paths produces a forest in which
each tree contains exactly one of the constraint vertices. Therefore the sum of
the costs of these tours is at most twice OPT . The final traveling salesman
tour of the whole graph combines the individual tours with the (undirected)
constraint edges, with short-cutting if necessary. By the triangle inequality, the
sum of all of the path edges is a lower bound on OPT , so the final solution is a
3-approximation to the optimal path-constrained TSP. ��

This approximation ratio implies a lower bound for the branch-and-bound
algorithm by taking the cost of the solution and dividing by 3. We also note that
the well-known Christofides technique of adding a min cost matching on vertices
of odd degree does not seem to be easily applicable in our problem.

5 Experiments

We ran our maximum circular-ordering dynamic programming algorithm on a
benchmark set of 12 chloroplast genomes from the Campanulaceae family (see
Table 5) on a workstation with 1Gb of memory. The lower bound strategy
implemented in GRAPPA is to try the default circular ordering first, then the
two above-mentioned heuristics, stopping at the first time a lower bound that
exceeds the current best score is found. Our implementation adds our dynamic
programming algorithm for computing the max circular ordering lower bound
as an additional bound if the first two bounds are not good enough. Our results
show that we get a significant improvement in both number of trees scored and
in total running time.

These experiments used the naive O(n4) implementation of the dynamic
programming so the running time would be even faster for the O(n3) implemen-
tation. In practice, it may be possible to improve the running time slightly by

Camp 10 Camp 12

Trees scored Time (min) Trees scored Time (min)

GRAPPA 6,391 3:40 80,551 165

Our algorithm 4,277 2:37 42,124 102

Fig. 2. Camp 12 is the full data set of 12 chloroplast genomes and Camp 10 is a subset

of 10 of those genomes. Both data sets are distributed with the GRAPPA source code.
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sharing partial computations between different trees, since many subtrees are
shared between trees.

6 Discussion

It has recently come to our attention that the O(n3) result for the maximum
circular ordering problem (Section 2) was previously achieved in two completely
different contexts [17,18].

We also remark that the problem we consider in this paper is related to
the classic Distance Wagner Method, in which the problem is to compute the
shortest tree that dominates a given distance matrix [19]. Our problem differs
in that we are also given the tree topology as an input.
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Abstract. We study the problem of phylogenetic reconstruction based
on gene order for whole genomes. We define three genomic distances
between whole genomes represented by signed sequences, based on the
matching of similar segments of genes and on the notions of breakpoints,
conserved intervals and common intervals. We use these distances and
distance based phylogenetic reconstruction methods to compute a phy-
logeny for a group of 12 complete genomes of γ-Proteobacteria.

Keywords: Phylogenetic reconstruction, breakpoints, common inter-
vals, conserved intervals, γ-Proteobacteria, gene families.

1 Introduction

Methods based on gene orders have proved to be powerful for the study of evolu-
tion, both for eukaryotes [8,9] and for prokaryotes [11,2]. The main algorithmic
methods developed for this purpose are based on a representation of a genome
by a signed permutation (see several survey chapters in the recent book [12] for
example). At first, this representation of genomes implies that these methods
should be limited to the comparison of genomes having the exact same gene
content and where there is a unique copy of each gene in each genome. This
model thus fits perfectly with the study of gene order in mitochondrial genomes,
for example [5]. However, in general, genomes do not share the same gene content
or some gene families are not trivial – a given gene can occur more than once in
a genome –, which implies that such genomes should be represented by signed
sequences instead of signed permutations. There has been several attempts to
develop methods for the comparison of such genomes and most of these methods
are based on the transformation of the initial data, a set of signed sequences
representing genomes, into a set of signed permutations, in order to apply one or
several of the algorithms developed in this context. For example, the approach
developed by the group of Pevzner for eukaryotic genomes is based on represent-
ing a genome by a sequence of synteny blocks, where such a block can contain
several genes [8,9]. Another approach, developed by Sankoff [16], suppresses in

A. McLysaght et al. (Eds.): RECOMB 2005 Ws on Comparative Genomics, LNBI 3678, pp. 11–20, 2005.
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every genome all but one copy of the genes of a gene family (the remaining gene
of this family in a genome being called the exemplar gene), which leads to rep-
resenting genomes by signed permutations. It is also natural to consider only a
subset of the genes of a genome, that belong to families of size one, as it was
done for a set of 30 γ-Proteobacteria in [2]. Finally, a recent approach is based on
the computation of a matching of similar segments between two genomes that
immediately allows to differentiate the multiple copies of a same gene and to
represent genomes by signed permutations [19,6]. This method, combined with
the reversal distance between signed permutations, has been shown to give good
results on simulated data [19].

In the present work, we are interested in the computation of genomic dis-
tances between bacterial genomes, based on gene order for whole genomes, and
to assess the quality of these distances for the reconstruction of phylogenies.
We define three distances in terms of gene orders based on two main ingredi-
ents: (1) the computation of a matching of similar genes segments between two
genomes, following the approach of [19], and (2) three measures of conservation
of the combinatorial structure: breakpoints, conserved intervals and common in-
tervals. This last aspect differs from most of previous works that relied on the
reversal distance. Moreover, this is, as far as we know, the first time that dis-
tances based on conserved intervals and common intervals are used on real data.
We test our distances on a set of 12 γ-Proteobacteria complete genomes studied
in [15,11], and, for two different sets of gene families, we compute phylogenies
for these data, using the Fitch-Margoliash method. We then compare the trees
we obtain to the phylogenetic tree proposed in [15], based on a Neighbor-Joining
analysis of the concatenation of 205 proteins.

2 Distances and Gene Matching

In this section, we introduce the combinatorial notions and algorithms used in the
computation of distances based on gene order conservation for whole genomes.

Genomes Representation. We represent a genome by a signed sequence on the
alphabet of gene families. Every element in a genome is called a gene1 and
belongs to a gene family. For a signed sequence G, one denotes by gi the signed
integer representing the ith gene in G. Two genes belong to the same gene family
if they have the same absolute value.

Gene Matching. Given two signed sequences G and H , a matching M between
G and H is a set of pairs (gi, hj), where gi and hj belong to the same gene family.
Genes of G and H that do not belong to any pair of the matching M are said to
be unmatched for M . A matching M between G and H is said to be complete if
for any gene family, there are no two genes of this family that are unmatched for
1 This terminology is restrictive as one could use the methods described in this work

considering any kind of genetic marker located on a genome, but we follow the
classical terminology and use the word gene through all this paper.



Genes Order and Phylogenetic Reconstruction 13

M and belong respectively to G and H . A matching M between G and H can
be seen as a way to describe a putative assignment of orthologous pairs of genes
between G and H (see [10] for example where this notion was used, together
with the reversal distance, to the precise problem of orthologous assignment). In
this view, segments of consecutive unmatched genes could represent segments of
genes that have been inserted, by lateral transfer for example, or deleted, due
to functional divergence of loss of genes after a lateral transfer or a segmental
duplication for example, during the evolution.

Given a matching M between two genomes G and H , once the unmatched
genes have been removed from these two genomes, the resulting matching M is
a perfect matching between the remaining genes of the two genomes. It follows
immediately that M defines a signed permutation of |M | elements, denoted
PM , as illustrated in Figure 1. We also denote by del(G, M) and del(H, M) the
number of maximum segments of consecutive unmatched genes in G and H .

Fig. 1. A possible complete matching M between two genomes G and H represented

as signed sequences. In this example, del(G, M) = del(H,M) = 2 and PM = 23 -3

-2 4 5 6 11 7 8 9 -10 12 14 15 16 17 -13 18 -19 21 20 22 1.

Given G, H and a matching M between G and H , one can define a distance
between G and H , induced by M , in terms of one of the classical distances
based on signed permutations, applied to the permutation PM , corrected with
del(G, M) and del(H, M) in order to take into account modifications of gene
order due to events like lateral transfer or loss of genes. In the following, we
consider three different distances, based on three measures of the conservation
of the combinatorial structure in signed permutations: breakpoints, conserved
intervals and common intervals.

The rationale for using the above ideas in the design of a gene order distance
between bacterial genomes relies on the observation that during their evolution,
prokaryotic genomes seem to have been rearranged mostly by short reversals
[14,18], which implies that close genomes will share similar clusters of genes [17].
Based on this hypothesis, one of the goals of our work was to study how distances
based on the conservation of structure allow to capture phylogenetic signal, and
we tried the three known measures of conservation of structures: breakpoints is the
simplest and has been used for a long time, while the two other distances, based on
intervals are more recent but capture more subtle similarities than breakpoints.

Breakpoints Distance. Let P = p1, . . . , pm be a signed permutation. A breakpoint
in P is a pair of consecutive elements pipi+1 such that pi+1 �= pi + 1. We denote
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by bkpts(P ) the number of breakpoints of P . Given a matching M between G
and H , and the corresponding signed permutation PM , we define the breakpoints
distance between G and H given M as follows:

d Breakpoints(G, H, M) =
bkpts(PM )

|M | +
del(G, M)

|G| +
del(H, M)

|H |

Note that this definition considers, in the computation of the distance, the size
of the matching M and the size of the compared genomes, both characteristics
that can vary a lot as it appears in our study of γ-Proteobacteria. In the example
given in Figure 1, bkpts(PM ) = 14, and del(G, M) = del(H, M) = 2. We thus
obtain d Breakpoints(G, H, M) = 14

23 + 2
26 + 2

26 = 0, 806.

Distances Based on Intervals. The number of breakpoints in a signed permuta-
tion is a very natural measure of conservation of the structure of this permutation
with respect to the identity permutation. Recently, several more complex mea-
sures of such structure conservation have been introduced, and in this work we
consider two of them: conserved intervals and common intervals.

A common interval in a signed permutation P is a segment of consecutive
elements of this permutation which, when one does not consider signs and order,
is also a segment of consecutive elements of the identity permutation (see [3] for
an example of the relationship between common intervals and the study of gene
order). Conserved intervals of signed permutations were defined in [4]: a segment
pi, . . . , pj of a signed permutation P , with i �= j, is a conserved interval if it is
a common interval of P and either pi > 0 and pj = pi + (j − i), or pi < 0 and
pj = pi − (j − i) (in other words, in absolute value, pi and pj are the greatest
and smallest elements of the common interval pi, . . . , pj). For a given signed
permutation P , one denotes respectively by ICommon(P ) and IConserved(P ),
the number of common intervals in P and the number of conserved intervals
in P .

Given a matching M between G and H , and the corresponding signed permu-
tation PM , we introduce here two new distances, based on ICommon(PM ) and
IConserved(PM ) : one defines the common intervals distance between G and H
given M by

d ICommon(G, H, M) = 1 − 2 ∗ ICommon(PM )
|M |2 +

del(G, M)
|G| +

del(H, M)
|H |

and the conserved intervals distance between G and H given M by

d IConserved(G, H, M) = 1 − 2 ∗ IConserved(PM )
|M |2 +

del(G, M)
|G| +

del(H, M)
|H |

Computation of a Matching. For a given distance model, a parsimonious ap-
proach for the comparison of two genomes G and H searches for a matching
M between G and H involving the smallest distance between G and H . Un-
fortunately, this problem has been shown to be NP-complete, when using the
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breakpoints and conserved intervals distances [6,7]. Swenson et al. [19] proposed
a fast heuristic to compute a matching based on a greedy approach consisting on
(1) identifying the longest common segment of unmatched genes of G that is also
a segment of unmatched genes in H , up to a reversal, (2) matching these two
segments of G and H , and (3) repeating the process until a complete matching
is found. In [7], Blin and Rizzi have designed a quite similar heuristic using a
suffix-tree. We have used the heuristic of Swenson et al. in the present work.
Let MG,H denote the matching returned by the heuristic with G as first and H
as second parameters. As our implementation of the heuristic does not return a
symmetric matching – matching MG,H may differ from MH,G –, we have defined
the distances, respectively of breakpoints, conserved intervals and common in-
tervals, between G and H as follows:

d Breakpoints(G, H) =
(d Breakpoints(G, H, MG,H) + d Breakpoints(H, G, MH,G))/2

d ICommon(G, H) =
(d ICommon(G, H, MG,H) + d ICommon(H, G, MH,G))/2

d IConserved(G, H) =
(d IConserved(G, H, MG,H) + d IConserved(H, G, MH,G))/2

3 Experimental Results and Discussion

Input Data. The data set we studied is composed of 12 complete genomes from
the 13 γ-Proteobacteria studied in [15]. We have not considered the genome of
V.cholerae because it is composed of two chromosomes, and this is not considered
in our model. This data set is composed of the genomes of the following species:
Buchnera aphidicola APS (Genbank accession number NC 002528), Escherichia
coli K12 (NC 000913), Haemophilus influenzae Rd (NC 000907), Pasteurella
multocida Pm70 (NC 002663), Pseudomonas aeruginosa PA01 (NC 002516),
Salmonella typhimurium LT2 (NC 003197), Xanthomonas axonopodis pv. citri
306 (NC 003919), Xanthomonas campestris (NC 0 03902), Xylella fastidiosa
9a5c (NC 002488), Yersinia pestis CO 92 (NC 003143), Yersinia pestis KIM5
P12 (NC 004088), Wigglesworthia glossinidia brevipalpis (NC 004344).

Data set and programs used and mentioned in this article can be found on a
companion web site at http://www.lacim.uqam.ca/~chauve/CG05.

Gene Families. From these 12 genomes, the initial step was to compute a parti-
tion of the complete set of genes into gene families, where each family is supposed
to represent a group of homologous genes. This partition induces the encoding
of the genomes by signed sequences, that is the input of the matchings computa-
tion that leads to distance matrices. Hence, the result of a phylogenetic analysis
based on gene order depends strongly on the initial definition of families. Due to
this importance of the partition of genes into families, and in order to assess the
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quality of the distances we defined on our data set of γ-Proteobacteria genomes
without relying on a single set of families, we used two different methods to
partition genes into gene families. Both are based on alignments of amino-acid
sequences with BLAST [1].

The first partition we used is the one computed in [15], in order to define
families of orthologous genes used in a Neighbor-Joining analysis of these γ-
Proteobacteria genomes, and has been provided to us by Lerat. Briefly, this
partition is given by the connected components of a directed graph whose nodes
are the coding genes and pseudo-genes of the 12 genomes and there is an edge
from gene g to gene h if the bit-score of the BLAST comparison of g against h
is at least equal to 30% of the bit-score of the BLAST comparison of g against
itself. Details are available in [15].

To compute the second partition we used all coding genes of our 12 genomes,
as well as ribosomal and transfer RNAs. For RNAs, the families were decided on
the basis of the annotation of the genes. For coding genes, a family is a connected
component of the undirected graph whose vertices are genes and where there is an
edge between two genes g and h if the alignment computed by BLAST between
the sequences of g and h has at least 25% of identity for both sequences, and
overlaps at least 65% of both sequences.

We can notice that the matchings of the second partition are always bigger
than the ones of the first partition. However, the difference between the two is
always relatively small compared to the size of the matchings.

Details on partitions and matchings can be found on the companion web site.

Phylogenetic Trees Computation. Given a matrix distance, obtained by the algo-
rithms described in Section 2, we computed phylogenetic trees using the following
Fitch-Margoliash phylogenetic reconstruction method implemented in the fitch
command (version 3.63) of the PHYLIP package available at http://evolution.
genetics.washington.edu/phylip.html,where we have used the G (global re-
arrangements) and J (jumbling, with parameters 3 and 1000) options. We chose
this method instead of the classical Neighbor-Joining method because it exam-
ines several tree topologies and optimizes a well defined criterion, based on the
least-squared error. We have used the retree command of the PHYLIP package
to re-root and flip some branches of the trees in order to harmonize the represen-
tation of our results with the tree obtained by Lerat et al. in [15–Figure 5].

Results and Analysis. Figures 2 and 3 present the trees obtained by applying
our method on the breakpoints, common and conserved intervals distances, and
the tree given by Lerat et al. using NJ method with the concatenation of 205
proteins [15–Figure 5], that we call the reference tree below.

One can notice that these trees agree relatively well with the reference tree.
Indeed, we can stress the following points:

1. Using either set of gene families, one cannotice that there are always differences
that concern the taxa Buchnera aphidicola and Wigglesworthia glossinidia bre-
vipalpis. However, Herbeck et al. [13] suggested that the fact that this clade
exists in the results from Lerat et al. [15] is due to a bias in GC composition.
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Fig. 2. Experimental results with the first set of gene families ([15]). (a) breakpoints

distance. (b) common intervals distance. (c) conserved intervals distance. (d) reference

tree obtained by Lerat et al. [15–Figure 5]. In gray, the genome not considered in our

experiments. In black, Buchnera aphidicola and Wigglesworthia glossinidia brevipalpis.

2. Using the first partition, and if we do not consider the case of Buchnera
aphidicola and Wigglesworthia glossinidia brevipalpis discussed above, one
can notice that the tree obtained with the breakpoints distance agrees with
the reference tree (Figure 2 (a)). Concerning the two other distances (con-
served intervals and common intervals distances), the only difference lies in
the position of Pseudomonas aeruginosa (Figures 2 (b) and 2 (c)).

3. Using the second partition, we also see that the tree obtained with the
breakpoints distance agrees with the reference tree (Figure 3 (a)), if Buchn-
era aphidicola and Wigglesworthia glossinidia brevipalpis are not considered.
Using any of the two other distances (conserved intervals and common inter-
vals distances), the only difference concerns the group of taxa Haemophilus
influenzae and Pasteurella multocida, that is placed at a different position
(Figures 3 (b) and 3 (c)).
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Fig. 3. Experimental results with the second set of gene families. (a) breakpoints dis-

tance. (b) common intervals distance. (c) conserved intervals distance. (d) reference

tree obtained by Lerat et al. [15–Figure 5]. In gray, the genome not considered in our

experiments. In black, Buchnera aphidicola and Wigglesworthia glossinidia brevipalpis.

Thus, we can say that the distances we defined capture a significant phyloge-
netic signal, and provide good results on real data. However, the use of distance
relying on intervals, as opposed to the one based on breakpoints, seems to imply
some inaccuracy in the trees we obtained. This should not come as a surprise, since
our matching computation method is optimized for the breakpoints distance.

4 Conclusion

In this first study, we proposed a simple approach for the phylogenetic recon-
struction for prokaryotic genomes based on the computation of gene matchings
and distances expressed in terms of combinatorial structure conservation. Despite
its simplicity, our approach gave interesting results on a set of 12 genomes of γ-
Proteobacteria, as the trees we computed agree well with the tree computed in [15]
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and based on the concatenation of the sequences of 205 proteins. It should be noted
that our results agree well too with another recent study based on gene order and
signed permutations [2]. Moreover, this study raises several interesting questions.

First, the initial computation of gene families plays a central role in the
gene order analysis. In [2] for example, where 30 γ-Proteobacteria genomes were
considered, these families were designed in such a way that each one contains
exactly one gene in every genome. As a consequence, if one considers all other
genes as member of families of size one, there is only one possible matching for
every pair of genomes. Based on these families, phylogenetic trees based on the
reversal and breakpoints distances were computed. Our approach can be seen as
less strict in the sense that pairwise genomes comparisons are not based only on
genes that are present in all genomes, and our results agree quite well with the
results of [2]. But more generally, it would be interesting to study more precisely
the influence of the partition of the set of all genes into families on the whole
process, and in particular the impact of the granularity of such a partition.

Second, a method for the validation of the computed trees, similar to the
bootstrap commonly used in phylogenetic reconstruction, would be a very valu-
able tool. This lack of a validation step in our analysis was one of the main
reasons that led us to use the Fitch-Margoliash method, that tries several topolo-
gies, instead of the Neighbor-Joining method. A validation method, based on a
Jackknife principle was introduced in [2], but it was not clear how to use it in
our context where the matchings used in pairwise comparisons can have very
different sizes.

Finally, we think that an important point in the development of methods
similar to the one described in this work should rely into the link between the
computation of a matching and the kind of measure of structure conservation
that is used to define a distance. Indeed, the principle of computing a matching
by the identification of similar segments is natural when breakpoints are used,
as two similar matched segments define only breakpoints at their extremities.
But when using distances based on intervals, it would clearly be more interesting
to consider also segments of similar gene content but maybe not with the same
order of the genes.
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Abstract. Most genome rearrangement studies are based on the as-
sumption that the compared genomes contain unique gene copies. This
is clearly unsuitable for species with duplicated genes or when local align-
ment tools provide many ambiguous hits for the same gene. In this paper,
we compare different measures of order conservation to select, among a
gene family, the pair of copies in two genomes that best reflects the
common ancestor. Specifically, we present algorithms to identify ances-
tral homologs, or exemplars [1], by maximizing synteny blocks between
genomes. Using simulated data, we validate our approach and show the
merits of using a conservative approach when making such assignments.

1 Introduction

Identifying homologous regions between genomes is important, not only for
genome annotation and the discovery of new functional regions, but also for the
study of evolutionary relationships between species. Once orthologous genes have
been identified, the genome rearrangement approach infers divergence history in
terms of global mutations, involving the displacement of chromosomal segments
of various sizes. The major focus has been to infer the most economical scenario
of elementary operations transforming one linear order of genes into another. In
this context, inversion (or “reversal”) has been the most studied rearrangement
event [2–6], followed by transpositions [7–9] and translocations [10–12]. All these
studies are based on the assumption that each gene appears exactly once in each
genome, which is clearly an oversimplification for divergent species containing
paralogous and orthologous gene copies scattered across the genome. Moreover,
even for small genomes (viruses, bacteria, organelles) where the hypothesis of
no paralogy may be appropriate, the assumption of a one to one correspondence
between genes assumes a perfect annotation step. However, in many cases, the
similarity scores given by the local alignment tools (such as BLAST or FASTA)
are too ambiguous to conclude to a one to one homology, and using different
parameters and cut-off values may lead to different sets of orthologs.

Approaches to identify homology typically only rely on local mutations; they
neglect the genomic context of each gene copy that might provide additional
information. For example, if two chromosomes are represented by the two gene
orders “badc” and “badceaf”, the two first a’s are more likely to be the two
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copies derived from the common ancestor, as they are preserving the gene order
context in the two chromosomes. Sankoff [1] was the first to test this idea with
the exemplar approach. The underlying hypothesis is that in a set of homologs,
there commonly exists a gene that best reflects the original position of the gene
family ancestor. The basic concept of Sankoff’s algorithm is to remove all but
one member of each gene family in each of the two genomes being compared, so
as to minimize the breakpoint or the reversal distance. Context conservation has
also been used in the annotation of bacterial genomes [13] to choose, among a set
of BLASTP best hits, the true ancestral copies, also called positional homologs .
We now want to extend these ideas to other measures of gene order conservation
such as conserved and common intervals [14–17]. These alternatives measures
generalize the breakpoint distance and similarly allow the comparison of a set
of genomes. Moreover, they allow the study of global genome evolution without
focusing on a specific rearrangement model.

In this paper, we use the common and conserved interval criteria to identify
the ancestral homologs. Generalizing the fact that gene copies that are sur-
rounded by the same genes in different genomes are more likely to be the true
ancestral copies, we identify ancestral homologs by maximizing blocks of synteny
between genomes. In Section 2, we review some gene order measures and their
use for genome rearrangement with gene families. In Section 3, we describe our
method and present algorithms for ancestral homolog assignment. In Section 4,
we analyze the performance of our method using simulated data and show the
effect of homolog assignment on the induced rearrangement distance.

2 Related Work

In the rest of this paper, a gene family a will refer to all homologs (orthologs
and paralogs) of a gene a among a set of genomes. Orthologs are copies among
different genomes that have evolved by speciation while paralogs are copies that
have evolved by duplication. A genome will be considered uni-chromosomal and
represented as a linear order of signed genes, where the sign represents the tran-
scriptional orientation of the gene. A chromosomal segment [a, b] is just the
subsequence surrounded by the two genes a and b.

2.1 Genome Rearrangement with Gene Families

Gene orders can be compared according to a variety of criteria. The breakpoint
distance between two genomes G and H measures the number of pairs of genes
a, b that are adjacent in one genome (contains the segment ‘a b’) but not in
the other (contains neither ‘a b’ nor ‘−b −a’). Rearrangement distances mea-
sure the minimal number of genome rearrangements (inversions, transpositions,
translocations· · ·) necessary to transform one order of genes into another.

Most work on rearrangement has been restricted to the comparison of genomes
with no gene copies. A method that does takes into account duplications, but
requires that the number of copies is the same in both genomes, has been pre-
sented by Tang and Moret [18]. Their approach relied on a straightforward
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Fig. 1. (a) Evolutionary model considered in [19]; using the breakpoint distance, the

chosen homologs are the one underlined by the same number in both genomes. (b)

Model considered in [1]; using the breakpoint distance, the chosen exemplars are the

underlined ones. (c) General model with duplications occurring before and after spe-

ciation; using the breakpoint distance and running the exemplar algorithm twice, the

chosen homologs are the one underlined by the same number in both genomes.

enumeration of all possible assignments of homologs between two genomes. More
recently, Chen et al. [19] gave an NP-hard result for this problem under the
reversal distance and presented an efficient heuristic based on a maximal cycle
decomposition of the Hannenhalli and Pevzner breakpoint graph [10,3]. Both of
these studies are based on an evolutionary model assuming that all copies were
present in the common ancestor and no duplication occurred after speciation
(Fig. 1a). In many contexts, this assumption may be questionable.

Another approach relaxing the copy number constraint has been considered
by Sankoff [1]. The exemplar approach consists in deleting, from each gene family,
all copies except one in each of the compared genomes G and H , so that the
two resulting permutations have the minimal breakpoint or reversal distance.
The underlying evolutionary model is that the most recent common ancestor
F of genomes G and H has single gene copies (Fig. 1b). After divergence, the
gene a in F can be duplicated many times in the two lineages leading to G
and H , and appear anywhere in the genomes. Each genome is then subject
to rearrangement events. After rearrangements, the direct descendent of a in
G and H will have been displaced less frequently than the other gene copies.
Even though finding the positional homologs (called exemplars in [1]) has been
shown NP-hard [20], Sankoff [1] developed a branch-and-bound algorithm that
has been shown practical enough on simulated data. More recently, Nguyen et
al. [21] developed a more efficient divide-and-conquer approach.

The preceding model is based on the hypothesis of a unique ancestral copy
for each gene family. However, in the more general case of an ancestral genome
containing paralogs, for each gene family, not only one but many pairs of an-
cestral homologs have to be found (Fig. 1c). The exemplar approach can also
be applied to this model. Indeed, by running the algorithm n times, n homolog
assignments are made for the same gene family. Recently, Blin et. al [22] gave an
NP-hard result and proposed a branch-and-bound exact algorithm to compute
the breakpoint distance under this model.
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Finally, Marron et al. [23] and Swenson et al. [24] have also developed an
alternative framework for the study of the evolution of whole genomes with un-
equal gene content. In this approach, instead of computing an edit distance,
the evolutionary distance is estimated by analyzing a different measure of con-
servation called the minimum cover. In combination with a neighbor-joining
procedure, this method was shown to successfully recover simulated trees under
various conditions [24].

2.2 Synteny Blocks

The drawback of considering a rearrangement distance to compare genomes is the
strong underlying model assuming evolution by one or two specific rearrangement
events. A simpler measure of order conservation (synteny) is the breakpoint
distance. Other more general measures of synteny have been proposed in the
genome rearrangement literature [14,16,17] and are now being reviewed.

Conserved Blocks. The notion of conserved intervals or blocks that has been
introduced in [14] is identical to the notion of a subpermutation introduced in
the Hannenhalli and Pevzner theory [10]. It is defined for genomes with single
gene copies as follows.

Definition 1. Given two genomes G and H, a conserved block is defined by
two signed genes a and b and a set of unsigned genes U such that, in each
genome, there exists a segment of the form S = [a, b] or S = [−b,−a], and the
set of unsigned genes appearing between the two endpoints is U (Fig. 2a). Such
a conserved block will be denoted [a, U, b].

(b)(a)
   G : G :  a     −b     c      j      e     −h     g    −f     i a     −b     c      j      e     −h      g    −f      i

1
1

Fig. 2. The blocks of G and H , for H being the identity permutation abcdefghij. (a)

Rectangles represent conserved blocks. For example, rectangle 1 represents the block

[a, U, c] with U = {b}. Bold rectangles are minimal blocks (not containing any other

block); (b) Common blocks. For example, rectangle 1 represents the common block

{a, b, c}. Bold rectangles are commuting blocks (either contained or have an empty

intersection with any other block).

For genomes with gene copies, the problem of finding a pairing of gene copies
that maximizes the number of conserved blocks (i.e. minimizing the conserved
block distance) has been recently shown to be NP-complete [15].
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Common Blocks. Even though conserved blocks have been shown useful for
the genome rearrangement studies, the endpoint constraint contained in the
definition is not directly linked to a specific biological mechanism. The notion of
a common block introduced in [16] relaxes this constraint.

Definition 2. Let G and H be two genomes on the gene set {c1, · · · , cn}. A
subset C of {c1, · · · , cn} is a common block of G and H iff G (respec. H) has a
segment which unsigned gene content is exactly C.

Common blocks have been considered as an additional criteria to improve
the realism of genome rearrangement scenarios [17,16].

3 Maximizing the Blocks

Following the assumption that the true descendents of an ancestral gene in two
genomes are the copies that have been less rearranged, the objective is to find
a pairing of gene copies that maximizes gene order conservation. We use two
measures of order conservation: the total number of conserved blocks and the
total number of common blocks.

There are a number of reasons to maximize the number of synteny blocks.
First, the more blocks we can construct among a set of genomes, the farther they
are from random permutations. Indeed, random orders are less likely to share
large intervals of similar content. Second, they generalize the breakpoint criteria
used in previous ancestral homolog assignment methods [1,18,19,13]. Third, in
contrast with rearrangement distances, they allow to model and compare, not
only two genomes, but also a set of genomes. Finally, although conserved blocks
are not directly linked to a specific rearrangement event, they represent the
components of the Hannenhalli and Pevzner graph [3,10], and as such, are related
to reversals.

It is preferable to measure similarity using the total number of blocks instead
of the number of minimal or commuting blocks mostly because two overlapping
blocks denote a better conservation than two disjoint blocks. Taking minimal
blocks or commuting blocks alone does not reflect this difference. In contrast,
maximizing the total number of blocks creates a bias towards overlapping blocks
and tend to favor small local rearrangements, which is justified by a variety of
biological and theoretical studies [25,26].

In section 3.1, we adapt the concepts of common and conserved blocks for
genomes with gene families. Next, we describe the main steps of our algorithm.
The first step, described in section 3.2, involves identifying all putative conserved
blocks in a genome. This is accomplished by building a tree-like structure to store
the conditions under which every possible block is attainable. In section 3.3, we
show how intersecting these trees allows to efficiently identify the conditions
required for these blocks to be conserved across multiple genomes. Finally, in
section 3.4, we describe how to select the gene copies in order to maximize the
total number of conserved blocks.
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3.1 Blocks for Genomes with Gene Families

A homolog assignment is a procedure that connects, from each gene family, two
particular gene copies, one from each genome. We generalize the notion of blocks
(conserved or common) to two sequences containing gene copies as follows.

Definition 3. Let G be a genome on the gene family set {c1, · · · , cn}. An indi-
vidual common block of G is any subset C of {c1, · · · , cn} that can be obtained
from any segment of G and any homolog assignment. An individual conserved
block is similar but is defined by its endpoints (ci, cj) and the gene subset U con-
tained between these endpoints. Given two genomes G and H with possible gene
copies, a common (respec. conserved) block is an individual common (respec.
conserved) block of both G and H.

For example, {a, b, c, f} is an individual common block of the genome G in
Fig. 3 obtained by choosing the copy f1 from the gene family f . It is also an
individual common block of H obtained by choosing the copy d2 in the gene
family d. Therefore, it is a common block of G and H . On the other hand, G
contains two individual conserved blocks ending with a and c, depending on
whether f1 is the copy chosen from the gene family f , or not (Fig. 3.(1)). In
the former case the block is B1, ending with a, c and defined by U = {b, f}; in
the latter case, the block is B2 ending with a, c and defined by U = {b}. B1 is
a conserved block of G and H , as it is also an individual conserved block of H
(by choosing c2, d2 and any of the two copies b1 or b2) (Fig. 3.(2)). B2 is also a
conserved block of G and H , as it is an individual block of H (by choosing b1

and c1). However blocks B1 and B2 are incompatible in H as they require two
different homolog assignments for the gene family c (Fig. 3.(3)).

a   f1   b   c   d   e   f2   gG:

a {b} c  and  a {b,f}c

H:     a   b1   c1   d1  f   b2   c2   g   d2   ea   f1   b   c   d   e   f2   g

a {b} c  or  a {b,f}c

G:

a {b} c  and  a {b,f}c incompatible

c2, d2, b1 or b2b1, c1

(1) (2)

(3)

Fig. 3. Maximizing the number of conserved blocks for the genomes G and H with

seven gene families represented by a, b, c, d, e, f, g. (1) Finding individual conserved

blocks in G; (2) Finding conserved blocks; (3) Maximizing the compatible conserved

blocks.

Our method will consist of three steps: 1) find all individual blocks of G and
H respectively, 2) find the common or conserved blocks by superimposing the
individual blocks of G and H and 3) select a maximal number of compatible
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conserved or common blocks. The method used at steps 2 and 3 is identical
for common and conserved blocks. However, step 1 is slightly different for the
two criteria. We will present the method for conserved blocks, and indicate the
differences for common blocks.

3.2 Finding Individual Conserved Blocks

For each genome and each pair {a, b} representing two gene families, we com-
pute all individual conserved blocks [a, U, b] by traversing the genome once, and
constructing a tree-like structure Ta,b (Fig. 4a,b). The initial node is denoted by
Φ. At the end of the construction, a terminal node t represents an individual
block [a, U, b] defined by the set U of labels in the path from Φ to t. As a block is
not affected by the order of its elements between its two endpoints, for efficiency
purposes we maintain a lexicographical order for each path in the tree.

f*

f*

f*

f*

b * f*Φ Φ b d

d

(a) (b)

(c) Φ fb

Fig. 4. The trees obtained for the pair {a, c} for (a): genome G, and (b): genome H ,

first introduced in Fig. 3. Marked states are denoted by a ’*’, and terminal states are

boxed. Superimposing trees (a) and (b) gives the tree (c), which represents the common

blocks [a, c] of G and H : the one containing b, and the one containing {b, f}.

During the tree construction, in addition to be terminal or not, each node is
either marked or unmarked. The marked nodes correspond to partial individual
blocks that can potentially form individual blocks later if a gene b is encountered.

At the beginning, Ta,b is restricted to a marked initial node Φ. The segment
surrounded by the first copy of a and the last copy of b is then traversed from left
to right. For each gene Si in this segment, if Si = a, we mark the initial state; if
Si = b, all marked states become terminal; otherwise, the tree Ta,b is incremented
by Algorithm Add-Node (Fig. 5). For simplicity, we do not distinguish between
a node and its label. Moreover, the lexicographical order of node refers to the
lexicographical order of the sequence of labels in the path from Φ to node.

Finally, a terminal path denotes a path from Φ to a terminal node. A non-
terminal path denotes any path from Φ or a terminal node to a leaf, that does
not contain any terminal node.

Theorem 1. [a, U, b] is an individual conserved block of G if and only if U is
the set of node’s labels of a unique terminal path of Ta,b.
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Algorithm Add-Node (Si, Ta,b)
1. For each node in lexicographical order Do
2. If node = Si

3. Mark node;
4. Else If node < Si and node is marked
5. If node has a child labeled Si

6. Mark this child;
7. Else
8. Create a node new labeled Si, and an edge from node to new ;
9. Mark new ;
10. End If
11. Else If node > Si

12. nodePrec = node’s father; P = subtree rooted by nodePrec;
13. If nodePrec does not have a child labeled Si

14. Create node new labeled Si, and an edge from nodePrec to new ;
15. End If
16. Attach P to the child of nodePrec labeled Si;
17. End If
18. If node ≥ Si

19. Skip all nodes of the subtree rooted by node
20. End If
21. End For
22. If Si represents a single gene
23. Remove all non-terminal paths that do not contain Si;
24. Unmark the nodes in all terminal paths that do not contain Si;
25. Unmark all the ancestors of the Si nodes;
26. End If

Fig. 5. Updating the tree Ta,b after reading the next gene Si in the largest segment of

genome G surrounded by the gene families a and b

Complexity. For each of the n2 gene pairs {a, b}, where n is the number of
genes, each genome G and H is traversed once. For each pair {a, b} and each
position i (from 1 to the size m of the genome), the ith character Gi of G has to
be added to the current tree Ta,b. This requires the traversal of the tree once, and
potentially perform subtree copies. Therefore, the worst time complexity of the
algorithm is in O(2n2mS), where S is the size of the largest tree. In practice,
subtree copies can be time consuming for large trees, making the algorithm
inapplicable for large data. But, an easy way to circumvent this problem is to
fix a tree depth threshold limiting the search to blocks of bounded length. We
will show in Section 4.1 that using any reasonable tree depth threshold provides
similar levels of accuracy.

Common Blocks. In the case of common blocks, there are three main differ-
ences: 1) we construct a unique tree for each genome (instead of constructing a
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tree for each pair {a, b} and each genome), 2) the initial state Φ is always marked
and 3) all tree-states are terminal.

3.3 Finding All Conserved Blocks

The conserved blocks [a, U, b] of G and H are obtained by superimposing the
two trees T G

a,b and T H
a,b corresponding to G and H respectively (Fig. 4c).

Theorem 2. [a, U, b] is a common block of G and H if and only if U is the set
of node’s labels of a terminal path common to T G

a,b and T H
a,b.

Notice that not all gene families are contained in conserved blocks. Conse-
quently some gene families that have not retain sufficient positional context in
both genomes may not be “resolved” with our approach. For example, the tree
of Fig. 4c does not contain nodes for gene families d and c.

3.4 Maximizing Compatible Blocks

As illustrated in Fig. 3c, different blocks are obtained by different constraints
that may be contradictory. In order to find compatible blocks, the constraints
attached to each block have to be computed during the construction of individual
trees. This is done with no additional complexity cost, by just labeling node
marks, and keeping in a table all constraints attached to each mark. As soon as
an endpoint is encountered, all marks become terminal and are reported with
their constraints (Fig. 6).

Finally, after superimposing the two genome’s trees and amalgamating the
corresponding constraints at each terminal state, a set of clauses representing
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Fig. 6. Terminal states of the tree in Fig. 4b. The table represents states constraints:

1s are variables that have to be chosen, and 0s those that have to be avoided. Empty

squares mean no constraints for the corresponding variables. State T5 is irrelevant and

has to be removed in a subsequent step, as b1 and b2 can not be avoided simultaneously.
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all conserved blocks is obtained. Maximizing the number of compatible blocks is
then reduced to a problem related to the extensively studied maximum satisfia-
bility (MAX-SAT). It is stated as follows: given a boolean formula in conjunctive
normal form (CNF), find a truth assignment satisfying a maximum number of its
clauses. Even though the MAX-SAT problem is NP-complete, it is well charac-
terized, and many efficient heuristics have been developed. However, the clauses
representing our blocks are not in CNF. Therefore, no direct MAX-SAT solver
can be used in this case. We developed an appropriate heuristic based on the
general method classically used to solve MAX-SAT problems: 1) Set an initial
solution (variable assignment) and evaluate the clauses; 2) Explore a neighbor-
hood of the initial solution, reevaluate the clauses and keep the best solution; 3)
Stop at convergence or after a fixed number of iterations.

4 Experimental Results

We used simulated data to assess the performance of the synteny blocks crite-
ria to assign ancestral homologs. The data is generated as follows. Starting from
a genome G with 100 distinct symbols representing 100 gene families, we obtain
a second genome H by performing k rearrangements on G, and then randomly
adding pG gene copies in G and pH gene copies in H at random positions. These
copies may represent artifacts of an alignment tool. We simulated 5 different in-
stances for each triplet (k, pG, pH), for k ∈ {10, 30, 50, 70, 90} and (pG, pH) ∈
{(0, 10), (0, 20), (10, 10)}.We considered two rearrangementmodels: 1) inversions,
transposition and inverted transpositions of size l following a Poisson distribution
Pλ(l) with λ = 0.8, to favor rearrangements of short segments (ALL) and 2) in-
versions of random size only (INV). We then run the algorithms and consider the
number of correct homolog assignments (resolved) and false predictions.

4.1 Impact of Tree Depth Threshold

As explained in Section 3.2, in order to obtain an efficient time algorithm, we
use a heuristic that constructs individual trees not exceeding a given tree depth
threshold. Fig. 7 shows the results obtained for tree depth thresholds 5 and 10,
using the evolutionary model ALL. For both common and conserved blocks, there
is very little tree depth effect on the quality of the result. In general, depth 10
does provides slightly better results with a few more resolved genes and slightly
fewer false predictions. This result validates the fact that restricting the search
to blocks of limited size is sufficient to capture the genomic context information.
But the extent to which this is true would need to be tested further by increasing,
for instance, the level of duplications.

4.2 Comparing Synteny Blocks and Breakpoint Distance Criteria

We have compared the blocks criteria with the breakpoint distance criteria using
the exemplar method developed in [21]. Fig. 8a shows the results obtained for the
evolutionary model ALL. In general, the conserved and common blocks criteria
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Fig. 7. Tree depth effect, for depth 5 (D5) and depth 10 (D10), on homolog assignment

using: (a) the conserved block and (b) the common block criterion. Simulated genomes

have 100 gene families. For a given number of rearrangements k under the evolutionary

model ALL, the results of 15 instances, five for each (pG, pH) ∈ {(0, 10), (0, 20), (10, 10)},
are averaged.

allow to correctly resolve fewer genes than the exemplar method. However, the
number of false predictions is notably reduced with our approaches. Comparing
the two blocks criteria, common blocks correctly resolve more genes, while con-
served blocks give fewer false predictions. We further compared the common and
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conserved blocks criteria using the evolutionary model INV (Fig. 8b). It appears
that both criteria have almost the same proportion of true predictions, while the
common blocks criterion produces more false predictions. The advantage of the
conserved block criteria under this model might be related to the its link to the
reversal theory [14].

4.3 Impact of Homolog Assignment on the Reversal Distance

Various approaches have been considered in the past to preprocess duplicated
genes for genome rearrangement studies. A common approach has been to re-
move all duplicated genes even though the missing data will typically lead to
an underestimate of the rearrangement distances. An alternative approach could
be to randomly assign corresponding pairs but that, in contrast, would lead to
an overestimate of the actual distances. We were interested in measuring the
extent of this under/over estimation and to compare it with the bias of our own
methods for homolog assignment. The results are shown in Fig. 9.

We observe a much stronger impact, especially at moderate levels of rear-
rangements, of the random assignment of homologs compared to the simple
removal of all duplicated genes. When k < .4n, apart from random, all meth-
ods are virtually indistinguishable making none a very acceptable method to
estimate the rearrangement distance (at least at this level of duplications).
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Fig. 9. The impact of homolog assignment on the observed reversal distance. ‘Actual’:

number of simulated reversals. ‘Good’: ideal case with true ancestral assignment, ‘Ran-

dom’: random selection of orthologs. ‘Conserve’ and ‘common’ are as before. For a given

number of reversals k, the results of 5 instances for (pG, pH) = (0, 20) are averaged.

Reversal distances between the final permutations are computed using GRAPPA [27].
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5 Conclusion

We have shown how synteny blocks can be used to accurately recover a large
proportion of ancestral homologs. The same approach could directly be used to
improve basic orthology prediction since it would not only rely on local alignment
but also on genomic context. But, the development of a more hybrid approach
that would combine both measures dynamically would also be desirable.

Based on the observation that incorrect assignment of homologs tend to have
a more damageable impact on the induced rearrangement distances, we propose
that a conservative approach, with a low level of false positives, is probably
most desirable for this problem. Another strength of the approach is that it
can directly be generalized to sets of multiple genomes. The next step of our
work will be use the method, as an alternative to the one used in [13], to assign
positional homology in bacterial genomes, and subsequently for the annotation
of more complex genomes.
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Abstract. We propose a detailed model of evolution of exon-intron
structure of eukaryotic genes that takes into account gene-specific in-
tron gain and loss rates, branch-specific gain and loss coefficients, invari-
ant sites incapable of intron gain, and rate variability of both gain and
loss which is gamma-distributed across sites. We develop an expectation-
maximization algorithm to estimate the parameters of this model, and
study its performance using simulated data.

1 Introduction

Spliceosomal introns are one of the most prominent idiosyncrasies of eukaryotic
genomes. They are scattered all over the eukaryota superkingdom, including,
notably, species that are considered basal eukaryotes, such as Giardia lamblia [1].
This suggests that evolution of introns is intimately entangled with eukaryotic
evolution; thus, the study of evolution of exon-intron structure of eukaryotic
genes, apart from being interesting in its own right, might shed some light on the
still enigmatic rise of eukaryotes. For example, one of the notorious, long-lasting
unresolved issues in evolution of eukaryotic genomes is the intron-early versus
intron-late debate. Proponents of the intron-early hypothesis posit that introns
were prevalent at the earliest stages of cellular evolution and played a crucial
role in the formation of complex genes via the mechanism of exon shuffling [2].
These introns were inherited by early eukaryotes but have been eliminated from
prokaryotic genomes as a result of selective pressure for genome streamlining. By
contrast, proponents of the intron-late hypothesis hold the view that introns had
emerged, de novo, in early eukaryotes, and subsequent evolution of eukaryotes
involved extensive insertion of new introns (see, e.g., [3,4]).

Various anecdotal studies have demonstrated certain features of intron evo-
lution. But it was not until the accumulation of genomic information in the
recent years that large-scale analyses became feasible. Such analyses yielded at
least three different models of intron evolution. One model assumes parsimo-
nious evolution [5]; another assumes a simple gene-specific gain/loss model and
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analyzes it using Bayesian learning [6]; and yet another one assumes a sim-
ple branch-specific gain/loss model on three-species phylogenetic topology and
analyzes it using direct maximum likelihood [7]. It seems that none of these
models is sufficiently general, and each neglects different aspects of this complex
evolutionary process. This is reflected in the major contradictions between the
predictions laid out by the three models. For example, the gene-specific model
[6] predicts an intron-poor eukaryotic ancestor and a dominating intron gain
process; the branch-specific model [7] predicts an intron-rich eukaryotic ancestor
and a dominating loss process; while the parsimonious model [5] is somewhat in
between, predicting intermediate densities of introns in early eukaryotes, and a
gain-dominated kaleidoscope of gain and loss events.

Here, we introduce a model of evolution of exon-intron structure, which is
considerably more realistic than previously proposed models. The model ac-
counts for gene-specific intron gain/loss mechanisms, branch-specific gain/loss
mechanisms, invariant sites (a fraction of sites that are incapable of intron gain),
and rate distribution across sites of both intron-gain and intron-loss. Using data
from extant species, we follow the popular approach of estimating the model pa-
rameters by way of maximum likelihood. Direct maximization of the likelihood
is, however, intractable in this case due to a large number of hidden random
variables in the model. These are exactly the circumstances under which the
expectation-maximization (EM) algorithm for maximizing the likelihood might
prove itself useful. None of the software packages that we are aware of, either
using direct maximization or EM, can deal with our proposed model. Hence,
we devised an EM algorithm tailored to our particular model. As this model
is rather detailed, a variety of biologically-reasonable models can be derived as
special cases. For this reason, we anticipate a broad range of applicability to
our algorithm, beyond its original use. In the following we describe our model of
exon-intron structure evolution and an EM algorithm for learning its parameters.

2 The Evolutionary Model

Suppose that we have multiple alignments of G different genes from S eukaryotic
species, and let our observed data be the projection, upon the above alignments,
of a presence-absence intron map. That is, at every site in each species we can
observe either zero (absence of an intron), one (presence of an intron), or 	
(missing value, indicating lack of knowledge about intron’s presence or absence).
Let us define a pattern as any column in an alignment, and let Ω ≤ 3S be the
total number of unique observed patterns, indexed as ω1, . . . , ωΩ. We shall use
ngp to denote the number of patterns ωp that are observed in gene g.

Let the rooted phylogeny of the above S species be given by an N -node
binary tree, where S = (N + 1)/2. Let q0, . . . , qN−1 be the nodes of this tree,
with the convention that q0 is the root node. We use the notations qL, qR and
qP to describe the left-descendant, right-descendant and parent, respectively, of
node q (left and right are set arbitrarily). Also, let L(q) stand for the set of
terminal nodes (leaves) that are descendants of q. We index the branches of the



An Expectation-Maximization Algorithm 37

tree by the node into which they lead, and use Δq for the length of the branch (in
time units) leading into node q. Hereinafter, we assume that the tree topology,
as well as the branch lengths Δ1, . . . , ΔN−1, are known.

Assume that the root node has a prior probability πi of being at state i
(i = 0, 1), and that the transition matrix for gene g along branch t, Ag

ij(qt) =
P (qt = j|qP

t = i), is described by

Ag(qt) =
(

1 − ξt(1 − e−ηgΔt) ξt(1 − e−ηgΔt)
1 − (1 − φt)e−θgΔt (1 − φt)e−θgΔt

)
, (1)

where ηg and θg are gene-specific gain and loss rates, respectively, and ξt and φt

are branch-specific gain and loss coefficients, respectively.
The common practice in evolutionary studies is to incorporate rate distribu-

tion across sites by associating each site with a rate coefficient, r, which scales the
branch lengths of the corresponding phylogenetic tree, Δt ← r · Δt. This rate
coefficient is drawn from a probability distribution with non-negative domain
and unit mean, typically the unit-mean gamma distribution. Such an approach
is compatible with the notion that each site has a characteristic evolutionary
rate. This, however, should be modified for intron evolution, where the gain
and loss processes do not seem to be correlated. That is, sites that are fast to
gain introns are not necessarily fast to lose them, and vice versa. Therefore, we
model rate variation using two independent rate coefficients, rη and rθ, such
that ηg ← rη · ηg and θg ← rθ · θg. These rates are independently drawn from
the two distributions

rη ∼ νδ(η) + (1 − ν)Γ (η; λ) (2)
rθ ∼ Γ (θ; λ).

Here, Γ (x; λ) is the unit-mean gamma distribution of variable x with shape
parameter λ, δ(x) is the Dirac delta-function, and ν is the fraction of sites
that are invariant to gain (i.e., sites that are incapable of gaining introns). Two
comments are in order with respect to these rate distributions. First, a site
can be invariant only with respect to gain, in accord with the proto-splice site
hypothesis that presumes preferential gain of introns at distinct sites [8]. In
contrast, once an intron is gained, it can always be lost. Second, we assumed the
same shape parameter for the gamma distributions of both gain and loss. This
is done solely to simplify the already complex model. At a later stage, we may
consider extending the model to include different shape parameters.

3 The EM Algorithm

Phylogenetic trees can be interpreted as Bayesian networks that depict an under-
lying evolutionary probabilistic model. Accordingly, the terminal nodes form the
observed random variables of the model, and the internal nodes form the hidden
random variables. Under this view, estimating the model parameters using EM
is natural. Indeed, different EM algorithms have been applied to phylogenetic
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trees with various purposes [9–11]. The algorithm that resembles the one de-
scribed here most closely was developed by Siepel & Haussler [12] and used for
branch length optimization and parameter estimation of time-continuous Marko-
vian processes. However, our model does not fit into any of the existing schemes
as it includes several unique properties, such as the branch-specific coefficients,
the gain-invariant sites, and the different treatment of rate variability across
sites. In the rest of this section, we develop the algorithm in the context of the
proposed model; we attempt to do so using notations that are as general as
possible, in order to allow the use of this algorithm with other models as well.

Denote by Ng = (n1g, . . . , nΩg) the counts of all observed patterns in the
gth alignment, and by Θ the set of model parameters. We will use, whenever
necessary, the decomposition Θ = (Ξ, Ψ, Λ) where Ξ = (Ξ1, . . . , ΞN−1) is the
set of branch-specific parameters, Ξt = (ξt, φt) in our case, characterized by
not being affected by the rate variability; Ψ = (Ψ1, . . . , ΨG) is the set of gene-
specific variables, Ψg = (ηg, θg) in our case, characterized by being subject to rate
variability, and Λ = (ν, λ) is the set of rate variables. We assume independence
between genes and between sites, hence the likelihood function is

L(N1, . . . ,NG|Θ) =
G∏

g=1

L(Ng|Ξ, Ψg, Λ) =
G∏

g=1

Ω∏
p=1

L(ωp|Ξ, Ψg, Λ)ngp , (3)

and the log-likelihood is just

log L(N1, . . . ,NG|Θ) =
G∑

g=1

Ω∑
p=1

ngp log L(ωp|Ξ, Ψg, Λ). (4)

To make the rate distributions (2) amenable to in silico manipulations, we
rendered them discrete as was done previously by Yang [13], using K cate-
gories for the gamma distribution, and an additional category for the invariant
sites. For the time being, we will keep our notations general and will not spec-
ify the rendering technique, and in particular, will not assume equi-probable
categories. Accordingly, rθ can take the values (rθ

1 , . . . , r
θ
K) with probabilities

(fθ
1 , . . . , fθ

K), and rη can take the values (rη
1 = 0, rη

2 , . . . , rη
K+1) with probabili-

ties (fη
1 = ν, fη

2 , . . . , fη
K+1). Introducing rate variability across sites is equivalent

to transforming the model into a mixture model, with the rates determining the
mixture coefficients. Consequently, we will associate with each site two discrete
random variables, ρη

p and ρθ
p, indicating the rate category of η and θ, respec-

tively. According to the EM paradigm, we are guaranteed to climb up-hill in
log L(ωp|Ξ, Ψg, Λ), if we maximize the auxiliary function

Qgp(Ξ, Ψg, Λ, Ξ0, Ψ0
g , Λ0) = (5)

=
∑

σ,ρη
p,ρθ

p

P (σ, ρη
p , ρθ

p|ωp, Ξ
0, Ψ0

g , Λ0) log P (ωp, σ, ρη
p, ρθ

p|Ξ, Ψg, Λ) =
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=
∑

σ,ρη
p ,ρθ

p

P (σ, ρη
p, ρθ

p|ωp, Ξ
0, Ψ0

g , Λ0) ·

·
K+1∑
k=1

K∑
k′=1

1{ρη
p=k}1{ρθ

p=k′}
[
log fη

k + log fθ
k′ + log P (ωp, σ|Ξ, Ψgkk′ )

]
.

Here, σ is any realization of the internal nodes of the tree, 1{ρ=k} is a function
that takes the value 1 when ρ = k and takes the value zero otherwise, and Ψgkk′ is
the set of effective gene-specific rates which, in our model, is Ψgkk′ = (ηgk, θgk′),
where we have introduced the notations ηgk = rη

k · ηg and θgk′ = rθ
k′ · θg. If we

now use

P (σ, ρη
p = k, ρθ

p = k′|ωp, Ξ
0, Ψ0

g , Λ0) = (6)

= P (ρη
p = k, ρθ

p = k′|ωp, Ξ
0, Ψ0

g , Λ0) · P (σ|ωp, Ξ
0, Ψ0

gkk′ )

in (5), we get

Qgp(Ξ, Ψg, Λ, Ξ0, Ψ0
g , Λ0) = (7)

K+1∑
k=1

K∑
k′=1

⎡
⎣ ∑

ρη
p ,ρθ

p

P (ρη
p, ρθ

p|ωp, Ξ
0, Ψ0

g , Λ0) · 1{ρη
p=k}1{ρθ

p=k′}

⎤
⎦ ·

·
[∑

σ

P (σ|ωp, Ξ
0, Ψ0

gkk′ )
[
log fη

k + log fθ
k′ + log P (ωp, σ|Ξ, Ψgkk′ )

]]
.

Denoting by wgpkk′ and Qgpkk′ the first and second square brackets, respectively,
the auxiliary function maximization of which assures increasing the likelihood is

Q =
G∑

g=1

Ω∑
p=1

K+1∑
k=1

K∑
k′=1

ngpwgpkk′Qgpkk′ . (8)

3.1 The E-Step

Here is how we compute wgpkk′ and Qgpkk′ for the current estimate Θ0 of the
model parameters.

wgpkk′ =
∑

ρη
p ,ρθ

p

P (ρη
p, ρθ

p|ωp, Ξ
0, Ψ0

g , Λ0)1{ρη
p=k}1{ρθ

p=k′} = (9)

= P (ρη
p = k, ρθ

p = k′|ωp, Ξ
0, Ψ0

g , Λ0) =

=
P (ρη

p = k|Ξ0, Ψ0
g , Λ0) · P (ρθ

p = k′|Ξ0, Ψ0
g , Λ0) · P (ωp|Ξ0, Ψ0

gkk′ )∑
h,h′ P (ρη

p = h|Ξ0, Ψ0
g , Λ0) · P (ρθ

p = h′|Ξ0, Ψ0
g , Λ0) · P (ωp|Ξ0, Ψ0

ghh′)
=

=
(fη

k )0(fθ
k′)0P (ωp|Ξ0, Ψ0

gkk′ )∑
h,h′(fη

h )0(fθ
h′)0P (ωp|Ξ0, Ψ0

ghh′)
.
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The function P (ωp|Ξ0, Ψ0
gkk′ ) is the likelihood of the tree that we rapidly com-

pute using a variant of Felsenstein’s pruning algorithm [14]. To this end, let us
define γgpkk′

(q) = P (L(q)|qP , Ξ0, Ψ0
gkk′ ), which is the probability of observing

those terminal nodes that are descendants of q, for a given state of the parent of
q. Omitting the superscripts for clarity, this function is initialized at all terminal
nodes qt ∈ L(q0) by

γ(qt) =

⎧⎪⎪⎨
⎪⎪⎩

(
1 − ξt(1 − e−ηgkΔt)
1 − (1 − φt)e−θgk′Δt

)
st = 0(

ξt(1 − e−ηgkΔt)
(1 − φt)e−θgk′Δt

)
st = 1,

(10)

where st is the value observed at qt. Then, γ is computed at all internal nodes
(except for the root) using the inward-recursion

γi(qt) =
1∑

j=0

Ag
ij(qt)γ̃j(qt), (11)

where γ̃j(q) is an abbreviation for γj(qL)γj(qR). The likelihood of the tree is
then

P (ωp|Ξ0, Ψ0
gkk′ ) =

1∑
i=0

πiγ̃i(q0). (12)

Using this in (9) allows us to compute the coefficients wgpkk′ . In order to com-
pute the coefficients Qgpkk′ we need a complementary recursion to the above
γ-recursion. To this end, let us define αgpkk′

(q, qP ) = P (q, qP |ωp, Ξ
0, Ψ0

gkk′ ).
Again, omitting the superscripts, this function can be initialized on the two
descendants of the root by

α(q, q0) =
1

P (ωp|Ξ0, Ψ0
gkk′ )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
π0γ0(qS)Ag

00(q) 0
π1γ1(qS)Ag

10(q) 0

)
q ∈ L(q0), s = 0(

0 π0γ0(qS)Ag
01(q)

0 π1γ1(qS)Ag
11(q)

)
q ∈ L(q0), s = 1(

π0γ0(qS)γ̃0(q)A
g
00(q) π0γ0(qS)γ̃1(q)A

g
01(q)

π1γ1(qS)γ̃0(q)A
g
10(q) π1γ1(qS)γ̃1(q)A

g
11(q)

)
q �∈ L(q0).

(13)
Here, q is a descendent of the root (either qR

0 or qL
0 ), and qS is its sibling. For

any other internal node, α is computed using the outward-recursion

α(q, qP ) =

(
γ̃0(q)
γ0(q)β0(qP )Ag

00(q)
γ̃1(q)
γ0(q)

β0(qP )Ag
01(q)

γ̃0(q)
γ1(q)β1(qP )Ag

10(q)
γ̃1(q)
γ1(q)

β1(qP )Ag
11(q)

)
, (14)

where β(q) = P (q|ωp, Ξ
0, Ψ0

gkk′ ) =
∑

qP α(q, qP ) is computed for each node
subsequently to the computation of α. Finally, for each terminal node that is
not a descendant of the root,
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α(q, qP ) =

⎧⎪⎪⎨
⎪⎪⎩

(
β0(qP ) 0
β1(qP ) 0

)
s = 0(

0 β0(qP )
0 β1(qP )

)
s = 1.

(15)

This inward-outward recursion is the phylogenetic equivalent of the backward-
forward recursion known from hidden Markov models, and other versions of it
have already been developed, see, e.g., [9,12]. We shall now see how the α’s and
β’s allow us to compute the coefficients Qgpkk′ . Notice that, if we use the state
variables as indices, we can replace the function log P (ωp, σ|Ξ, Ψgkk′ ) in (7) by

log P (ωp, σ|Ξ, Ψgkk′ ) =
1∑

i=0

(q0)i log πi +
1∑

i,j=0

N−1∑
t=1

(qt)j(qP
t )i log Ag

ij(qt). (16)

Denote the expectation over P (σ|ωp, Ξ
0, Ψ0

gkk′ ) by Eσ. Applying it to (16) we
get

Eσ [log P (ωp, σ|Ξ, Ψgkk′ )] = (17)

=
1∑

i=0

log πiEσ[(q0)i] +
1∑

i,j=0

N−1∑
t=1

log Ag
ij(qt)Eσ [(qt)j(qP

t )i].

But, Eσ[(q0)i] = P (q0 = i|ωp, Ξ
0, Ψ0

gkk′ ) = βi(q0), and similarly Eσ[(qt)j(qP
t )i] =

αij(qt, q
P
t ), so that Qgpkk′ can be finally written as

Qgpkk′ =
∑

σ

P (σ|ωp, Ξ
0, Ψ0

gkk′ ) · (18)

·
[
log fη

k + log fθ
k′ + log P (ωp, σ|Ξ, Ψgkk′ )

]
=

= log fη
k + log fθ

k′ +
1∑

i=0

βi(q0) log πi +
1∑

i,j=0

N−1∑
t=1

αij(qt, q
P
t ) log Ag

ij(qt).

One of the appealing features of EM is that is allows, in many cases, to treat
missing data fairly easily. In our case, two simple modifications are required for
this. Firstly, we have to add to the γ-recursion initialization (10) an option

γ(qt) =
(

1
1

)
st = 	. (19)

Secondly, we have to add to the α-recursion finalization (15) an option

α(qt) =
(

β0(qP
t )Ag

00(qt) β0(qP
t )Ag

01(qt)
β1(qP

t )Ag
10(qt) β1(qP

t )Ag
11(qt)

)
st = 	. (20)
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3.2 The M-Step

Substituting the expressions for wgpkk′ and Qgpkk′ in (8), we obtain the final
form of the function to be maximized at each iteration. Explicitly, this is

Q =
G∑

g=1

Ω∑
p=1

K+1∑
k=1

K∑
k′=1

ngpwgpkk′ (log fη
k + log fθ

k′) + (21)

+
G∑

g=1

Ω∑
p=1

K+1∑
k=1

K∑
k′=1

ngpwgpkk′
[
βgpkk′

0 (q0) log π0 + βgpkk′
1 (q0) log π1

]
+

+
G∑

g=1

Ω∑
p=1

K+1∑
k=1

K∑
k′=1

N−1∑
t=1

ngpwgpkk′αgpkk′
00 (qt) log

[
1 − ξt(1 − e−ηgkΔt)

]
+

+
G∑

g=1

Ω∑
p=1

K+1∑
k=1

K∑
k′=1

N−1∑
t=1

ngpwgpkk′αgpkk′
01 (qt)

[
log ξt + log(1 − e−ηgkΔt)

]
+

+
G∑

g=1

Ω∑
p=1

K+1∑
k=1

K∑
k′=1

N−1∑
t=1

ngpwgpkk′αgpkk′
10 (qt) log

[
1 − (1 − φt)e−θgk′Δt

]
+

+
G∑

g=1

Ω∑
p=1

K+1∑
k=1

K∑
k′=1

N−1∑
t=1

ngpwgpkk′αgpkk′
11 (qt) [log(1 − φt) − θgk′Δt] .

It is well-known that any increase in Q suffices to climb up-hill in the like-
lihood, and therefore it is not of utmost importance to maximize it precisely.
Hence, we do not invest too much in finding precise maximum, but rather use
low-tolerance maximization with respect to each of the parameters individually.
Since it is easy to differentiate Q twice with respect to all the parameters (except
for λ), we use the Newton-Raphson zero-finding algorithm for the maximization.
Due to space limitations and because the derivation is, essentially, trivial, we do
not present them here.

We must, however, devote a few words to the maximization of Q with respect
to λ. In (21) we kept the rate distributions general, but (2) imposes the con-
straints rθ

k = rη
k+1. Furthermore, in rendering the gamma distribution discrete,

we assume equi-probable categories, thus

fη
k+1 = (ν − 1)fθ

k =
ν − 1

K
k = 1, . . . , K. (22)

Therefore, Q depends on λ through rη and rθ, making analytic differentiation
impossible. Thus, in this case, we used Brent’s maximization algorithm that does
not require derivatives.

4 Validation

We intend to apply the algorithm to real data, namely, an amended version of the
data set from [5], which consists of multiple alignments of over 700 orthologous
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genes from 8 eukaryotic species. However, prior to its application to real data,
the algorithm must be carefully validated against simulated data. Thus, we have
written simulation software that performs three tasks. Firstly, given the number
of extant species, it builds a random phylogeny. Secondly, it assigns random
lengths to the branches based on the exponential distribution (keeping the tree
balanced). Thirdly, it draws the model parameters subject to some biologically
plausible constraints. Given the phylogenetic tree and the model parameters,
we then simulate any desired number of evolutionary scenarios, collecting the
observations on the terminal nodes.

While EM algorithms always converge to a maximum of the likelihood, they
are not guaranteed to find the global maximum. In practice, however, we have
strong indications that our EM algorithm is highly effective in finding the global
maximum. We cannot provide a proof for this, but at least it is clear that it
always estimates model parameters that give a higher likelihood than the true
model parameters, see Figure 1.
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Fig. 1. Summary of 9 independent simulations. For each simulation, a 4 species ran-

dom phylogeny spanning 400 million years and a set of model parameters were drawn

randomly. Intron evolution was simulated for four multigenes of mean length of 5000

AA, with no rate variation. Parameters were estimated using tolerance of 10−2. The

dots indicate log-likelihood values computed for the true model parameters, and the

pentagons indicate log-likelihood values computed for the estimated parameters. Note

that the log-likelihood of the estimated parameters is always greater than that of the

true parameters.

A well known property of maximum likelihood estimators is that they are
not guaranteed to be unbiased for any finite sample size. In our model, and
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Fig. 2. Estimated π0 versus true π0.Each dot is the mean of three simulations of six-

species random phylogeny spanning 300 million years. In each simulation, we assumed

four multigenes of mean length of 50,000 AA, with no rate variation.

probably in other phylogenetic models, the bias might be significant, mainly
due to the small number of species and to the paucity of informative patterns.
An example is shown in Figure 2, where the probability π0 of the root node is
estimated. This problem can be less severe when a monotonic relation between
the true parameter and the estimated one holds (Figure 2). We are currently
investigating different approaches to map this bias more accurately.

5 Discussion

We describe here an algorithm that allows for parameter estimation of an evo-
lutionary model for exon-intron structure of eukaryotic genes. Once estimated,
these parameters could help resolving the current debate regarding evolution of
introns, in particular, with regard to the relative contributions of intron loss and
gain in different eukaryotic lineages.

Some of the assumptions of our model are worth discussion. Specifically, in
Equations (3) and (4), we assumed that different sites evolve (i.e., gain and lose
introns) independently. However, several observations show that such indepen-
dence is only an approximation. First, introns in intron-poor species tend to
cluster near the 5’ end of the gene [15,16]. Second, adjacent introns tend to be
lost in concert [16,17]. Nevertheless, it seems that such site-dependence of gain
and loss is a secondary factor in intron evolution. First, non-homogeneous spatial
distribution of introns along the gene is pronounced only in species with a low
number of introns. Second, some anecdotal studies could not find any preference
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of adjacent introns to be lost together (e.g., [18].) Should subsequent studies
indicate that the dependence between sites is more important than we currently
envisage, our model probably can be extended using the context-dependent ideas
developed in [12].

Similarly, in Equations (3) and (4), we assumed that different genes gain and
lose introns independently. Currently, we are unaware of any strong evidence
for such dependence, but if it is discovered, it can be easily accounted for in
our model by concatenating genes with similar evolutionary trends and treating
them as a single multigene.

Additionally, we assumed the same shape parameter for the gamma distri-
bution of intron gain and loss rates. As mentioned above, this assumption was
taken out of convenience, and due to the general impression that the exact shape
of the gamma distribution is not a primary factor. However, our model can be
rather easily extended to incorporate different shape parameters for gain and
loss.

The computational complexity of the algorithm is, in the worst case, O(G ·
S · K2 · 3S). The exponential dependency arises because the number of unique
patterns, Ω, is exponential with the number of species. However, if W is the
total number of sites in all the alignments, it bounds Ω by Ω ≤ min(W, 3S),
thus keeping us, in practice, far away off the worst case.

The current Matlab R© code is too slow to handle efficiently the real data
(over two million sites) and the massive simulations. Therefore, we are in the
process of writing the code in C++, allowing for its application to large data
sets. The C++ software will be made available as soon as it is ready.
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Abstract. Whether common ancestors of eukaryotes and prokaryotes
had introns is one of the oldest unanswered questions in molecular evo-
lution. Recently completed genome sequences have been used for compre-
hensive analyses of exon-intron organization in orthologous genes of di-
verse organisms, leading to more refined work on intron evolution. Large
sets of intron presence-absence data require rigorous theoretical frame-
works in which different hypotheses can be compared and validated. We
describe a probabilistic model for intron gains and losses along an evolu-
tionary tree. The model parameters are estimated using maximum likeli-
hood. We propose a method for estimating the number of introns lost or
unobserved in all extant organisms in a study, and show how to calculate
counts of intron gains and losses along the branches by using posterior
probabilities. The methods are used to analyze the most comprehensive
intron data set available presently, consisting of 7236 intron sites from
eight eukaryotic organisms. The analysis shows a dynamic history with
frequent intron losses and gains, and fairly — albeit not as greatly as
previously postulated — intron-rich ancestral organisms.

1 Introduction

A major difference between eukaryotic and prokaryotic gene organization is that
many eukaryotic genes have a mosaic structure: coding sequences are separated
by intervening non-coding sequences, known as introns. Francis Crick’s 1979 com-
ment [1] on the evolutionary origins of spliceosomal introns — “I have noticed that
this question has an extraordinary fascination for almost everybody concerned
with the problem” — could have been said yesterday. The problem is still not com-
pletely resolved [2]. The question of whether or not the most recent common ances-
tor of eukaryotes and prokaryotes had introns, known as the “introns early/late”
debate [3], is one of the oldest unanswered questions in molecular evolution. Re-
cent advances [4–8] rely on whole-genome sequences for diverse organisms. It has
become clear that introns have been gained and lost in different lineages at various
rates. In this context it is of particular interest to estimate the intron densities in
early eukaryotic organisms, as well as rates and patterns of intron loss and gain
along different evolutionary lineages. The aim of this article is to describe a prob-
abilistic model which allows for a maximum likelihood (ML) analysis of rates and
scenarios. We describe some methods to this end and apply them to a data set of
7236 introns from eight fully sequenced eukaryotic organisms.

A. McLysaght et al. (Eds.): RECOMB 2005 Ws on Comparative Genomics, LNBI 3678, pp. 47–60, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 A Probabilistic Model for Intron Evolution

In order to model the evolution of introns along an evolutionary tree, we use a
Markov model that permits varying rates along different branches, described as
follows. Let T be a phylogenetic tree T over a set of species X : T is a rooted
tree in which the leaves are bijectively labeled by the elements of X . Let E(T )
denote the set of edges (directed away from the root), and let V (T ) denote the
node set of the tree. Throughout the paper, intron presence is encoded by the
value 1, and intron absence is encoded by the value 0. Along each edge e ∈ E(T ),
introns are generated by a two-state continuous-time Markov process with gain
and loss rates λe, μe ≥ 0, respectively. The length of an edge e is denoted by te. In
addition, the root is associated with the root probabilities π0, π1 with π0+π1 = 1.
The tree T with its parameters defines a stochastic evolution model for the
state χ̃(u) of an intron site at every tree node u ∈ V (T ) in the following manner.
The intron is present at the root with probability π1. The intron state evolves
along the tree edges from the root towards the leaves, and changes on each edge
according to the transition probabilities. For every child node v and its parent u,
P

{
χ̃(v) = j

∣∣∣ χ̃(u) = i
}

= pi→j(uv), where pi→j are determined by the edge
parameters, which we discuss shortly. The values at the leaves form the character
χ = (χ̃(u) : u ∈ X). The input data set (or sample) consists of independent and
identically distributed (iid) characters: D = (χi : i = 1, . . . , n).

Using standard results [9], the transition probabilities along the edge e with
rates λe = λ, μe = μ and length t can be written as

p0→0(e) =
μ

λ + μ
+

λ

λ + μ
e−t(λ+μ) p0→1(e) =

λ

λ + μ
− λ

λ + μ
e−t(λ+μ)

p1→0(e) =
μ

λ + μ
− μ

λ + μ
e−t(λ+μ) p1→1(e) =

λ

λ + μ
+

μ

λ + μ
e−t(λ+μ).

In the absence of independent edge length estimates, we fix the scaling for the
edge lengths in such a way that λe + μe = 1.

A somewhat more complicated model of intron evolution was used by Rzhet-
sky et al. [10], who also accounted for possible intron sliding [11], whereby orthol-
ogous intron sites may differ by a few positions with respect to the underlying
coding sequence in different organisms. In our case, the orthology criterion incor-
porates intron sliding a priori. Some other authors (e.g., [5]) imposed a reversible
Markov model with identical rates across different branches, which is not entirely
realistic for intron evolution, but nevertheless can result in important insights
already.

3 ML Estimation of Parameters and Scenarios

3.1 Unobserved Intron Sites

Our goal is to design a maximum likelihood approach to estimate the model
parameters on a given tree T , and to calculate likely scenarios of intron gains
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and losses along the edges. The described probabilistic model is fairly simple,
and the parameters can be estimated from a data set by usual optimization
techniques [12]. There is, however, an inherent difficulty in analyzing an intron
absence/presence data set: there is no obvious evidence of introns lost in all
extant organisms in the study. Consequently, one has access only to a sample of
iid characters from which the all-0 characters (“unobserved introns”) have been
removed. Maximizing the likelihood without the all-0 characters introduces a
bias. At the same time, it is not possible to estimate the number of missing
all-0 characters by maximizing either the likelihood (every added all-0 character
decreases it), or the average likelihood (an unbounded number of all-0 characters
can be added if their likelihood is large enough). It is therefore necessary to
separate the estimation of unobserved sites from likelihood maximization.

The problem of augmenting the data set with a certain number of all-0 char-
acters has a particular relevance for the complexity of ML estimation of phylo-
genies. Tuffley and Steel [13] showed that ML and maximum parsimony (MP)
yield the same optimal tree topology when enough all-0 characters are added
to the data set in a symmetric binary model. Their result was employed very
recently [14,15] to demonstrate the NP-hardness of ML optimization for phy-
logenies. The theoretical connection between ML and MP established by the
addition of all-0 characters has direct practical consequences in the case of in-
tron data sets. For instance, the analyses of the same sample carried out by
two groups of researchers [4,16–18], using ML and MP, arrived at different con-
clusions concerning intron gain/loss rates and ancient intron density. Some of
the disagreements can be attributed to different assumptions about unobserved
sites, instead of methodological issues.

For a formal discussion, define the following notions. An extension χ̃ of a
character χ is an assignment of states to every tree node that agrees with χ at
the leaves. Let H(χ) denote the set of all extensions of χ. The likelihood of a
character χ is the probability

fχ =
∑

χ̃∈H(χ)

πχ̃(root)

∏
uv∈E(T )

pχ̃(u)→χ̃(v)(uv).

The likelihood of a complete data set D = (χi : i = 1, . . . , n) is simply L(D) =∏n
i=1 fχi . Let f0 denote the likelihood of the all-0 character 0|X|. The expected

number of all-0 characters in a data set of size n is nf0. Accordingly, the expected
number of unobserved sites given that there are n̄ observed ones (non-all-0 char-
acters in the data set), is

n̂0 = n̄
f0

1 − f0
. (1)

(The distribution of the number of unobserved sites is a negative binomial dis-
tribution with parameters n̄ and (1 − f0).)

Let D̄ = (χi : i = 1, . . . , n̄) denote the observed sample, without the all-0
characters, and n0 = n− n̄ denote the true number of unobserved sites. Figure 1
sketches the algorithm Guess-the-sample for ML estimation of model param-
eters using a guess for n0. The guess is used to optimize the model parameters
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and then to compute the expected number of unobserved sites using Eq. (1).
Line G4 compares the latter with the original guess and if they differ too much,
it rejects the optimized parameters. The exact definition of “too much” can rely
on the concentration properties of n0: for a given sample size n, it is binomi-
ally distributed with parameters n and f0 with a variance of nf0(1 − f0). For
example, the guess Z can be rejected if

|n̂0 − Z| > c
√

(n̄ + Z)f0(1 − f0),

where c is a constant determining the desired confidence level. Figure 3 shows
the behavior of this difference for a data set analyzed in Section 4. Notice that
the plot suggests that n0 could be estimated by an iterative technique, in which
two steps are alternating: (1) estimation of the number of intron sites, based on
model parameters, and observed introns, and (2) maximization of the likelihood
given the estimated number of intron sites. In other words, n̂0 can be fed back to
the algorithm in Line G4 in lieu of rejection, until convergence is reached. Based
on the plot of Fig. 3, however, the convergence is very slow, and there is nothing
gained over trying basically all possible values for n0. (There is an upper bound
given by the length of sequences from which D̄ was obtained.)

Algorithm Guess-the-sample
Input A guess Z for n0, observed sample D̄ = (χ1 : i = 1, . . . , n̄)

G1 Set D′ = (χ′
i : i = 1, . . . , n̄ + Z) with χ′

i = χi for i ≤ n̄ and χ′
i = 0|X| for i > n̄.

G2 Optimize the model parameters on the augmented sample D′.
G3 Calculate n̂0 by using the optimized model parameters in Eq. (1).
G4 Reject if n̂0 differs from Z by too much.

Fig. 1. ML parameter estimation with unknown number n0 of unobserved sites

3.2 Patterns of Intron Gain and Loss Along Tree Edges

Once the number of unobserved intron sites is estimated and the model param-
eters are optimized, the model can be used to infer likely scenarios of intron
evolution. In particular, exact posterior probabilities for intron presence can be
calculated at each node, or for intron loss and gain on each branch. Define the
lower conditional likelihood for every node u, site i, and state x ∈ {0, 1} by:

L
(x)
i (u) = I{x = χi(u)} when u is a leaf,

L
(x)
i (u) =

∏
v∈children(u)

( ∑
y∈{0,1}

px→y(uv)L(y)
i (v)

)
when u is not a leaf,

where I{A} is the indicator function: I{A} = 1 if A is true, otherwise I{A} = 0.
The value L

(x)
i (u) is the probability of observing the states from character χi at

the leaves of the subtree Tu rooted at u, given that u is in state x.
We also need the upper conditional likelihood U

(x)
i (u), which is the probability

of observing the states from character χi at leaves that are not in the subtree Tu,
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given that u is in state x. The upper conditional likelihoods can be computed by
dynamic programming, using the following recursions in a breadth-first traversal.

U
(x)
i (root) = 1

U
(x)
i (u) =

∑
y∈{0,1}

py→x(vu)U (y)
i (v)

∏
w∈siblings(v)

( ∑
z∈{0,1}

py→z(vw)L(z)
i (w)

)
,

where v is the parent of u.
The posterior probability that node u is in state x at site i equals

q
(x)
i (u) ∝ U

(x)
i (u)L(x)

i (u).

Usual posterior calculations of ancestral states described in, e.g., [19,12] apply to
reversible mutation models, when the tree can be rerooted at u and then L(x)(u)
can be used directly. Here we need the additional technicality of computing
upper conditional likelihoods. One can also compute the posterior probability of
site i undergoing a x → y transition on the edge leading to the node v from its
parent u as

q
(x→y)
i (uv) ∝ U

(x)
i (u)px→y(uv)L(y)

i (v).

Working with posterior probabilities instead of the single most likely extension
has the advantage that posterior probabilities can be summed to obtain expected
counts for intron gains and losses. The posterior mean counts of states at a
node u, or state transitions (x → y) on an edge uv are computed as

n(x)(u) =
n∑

i=1

q
(x)
i (u),

n(x→y)(uv) =
n∑

i=1

q
(x→y)
i (uv),

(2)

respectively. (Notice that the sums include the unobserved intron sites.) In par-
ticular, n(1)(u) is the expected number of introns present at node u, given the
model parameters and the observed data. Similarly, n(0→1)(uv) is the expected
number of introns gained, and n(1→0)(uv) is the expected number of introns lost
along the edge uv.

4 Intron Evolution in Eukaryotes

Rogozin et al. [4] compiledadata setbasedonorthologousproteingroups in eukary-
otic organisms.They aligned protein sequences with the genome sequences of eight
fully sequenced organisms, and defined orthologous intron positions based on con-
served regions in the alignments.Thedata set (downloaded fromftp://ftp.ncbi.
nlm.nih.gov/pub/koonin/intron evolution) consists of 7236 orthologous in-
tron positions, from 684 protein groups. Figure 2 shows the organisms involved in
the study, as well as the number of introns for each organism.
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Fig. 2. Phylogenetic tree for the data set in Section 4, showing taxon names and

intron counts. P. falciparum serves as an outgroup. Only the solid edges were used

in the computations. The edge that connects P. falciparum to the tree accounts for

changes between the Opisthokont node, and the most recent common ancestor (MRCA)

of plants, animals, fungi, and apicomplexans, as well as for those leading from that

MRCA to P. falciparum.

We note in passing that there is some ongoing debate [20–23] as to whether
the phylogenetic tree of Fig. 2 is correct, namely, whether Ecdysozoa are mono-
phyletic. Philippe et al. [22] argue that they are, and that support for other
hypotheses are due to long branch attraction phenomena. Roy and Gilbert [21]
also argue for an ecdysozoan clade, based on the intron data set of [4]. We con-
sider only one phylogenetic tree, and leave further analysis to a more complete
version of this abstract.

We implemented a Java package for the analysis of intron data sets, which
performs parameter optimization and posterior calculations. As we indicated in
§3.1, it is necessary to estimate the number of unobserved intron sites before
proceeding to likelihood maximization. Figure 3 shows the estimation procedure
applied to the data at hand. The estimation reaches a fix point at around 35
thousand unobserved characters, i.e., likelihood optimization with that many
all-0 characters gives an equal expectation (within integer rounding) for the
number of unobserved characters. Allowing for some statistical error, about 20–
80 thousand unobserved characters give an expectation that is within twice the
standard error after parameter optimization.

Using 35000 unobserved characters, we proceeded to parameter optimization,
and then to the estimation of intron loss and gain patterns. Rogozin et al. [4]
computed losses and gains using Dollo parsimony [24,25], assuming that every
intron arose only once along the tree.

Roy and Gilbert [16,17] estimated transition probabilities and intron counts
using “local” optimization, independently for each edge. (A similar method was
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Fig. 3. Estimation of unobserved intron sites. The X axis shows the guess Z with which

algorithm Guess-the-sample is invoked, and the Y axis shows the difference n̂0 − Z

calculated after parameter optimization. The dotted lines delineate the region in which

the difference is below twice the standard deviation.

used in [6].) Their principal technique is a tree contraction, in which a whole sub-
tree is replaced by a single branch, and the corresponding characters are derived
by computing a logical OR over the intron states at the subtree leaves. They
provide separate sets of formulas for analyzing exterior and interior branches.
In the case of exterior branches, three-leaf star trees are formed, in which the
original edge is preserved, a second edge is contracted from the sibling subtree,
and the third edge is contracted from the rest of the tree. In the case of in-
ternal branches, they contract the subtrees for the four neighbors of the edge
endpoints to form a quartet. (The method applies only to binary trees.) The
methods of [16,17] estimate a larger number of parameters than our likelihood
optimization: in addition to the probabilities of intron inheritance, various intron
loss and gain counts are independently estimated on each branch. It is plausible
that by not enforcing consistency between different estimates that depend on the
same parameter (for instance, the same edge transition probabilities should ap-
pear in many different contractions), the results may get distorted. In addition,
the Roy-Gilbert formulas do not account for the possibility of introns arising
more than once.

Multiple origins of introns in an orthologous position are explicitly forbid-
den by Dollo parsimony. Parallel gains are allowed in our probabilistic model,
and may in truth account for a number of shared introns between eukaryotic
kingdoms [5,18]. Even if one disregards for a moment the question of parallel
gains, Dollo parsimony still has its own shortcomings when used for reconstruct-
ing plausible histories. If intron gains are much less probable than intron losses,
Dollo parsimony retrieves the most likely extension for every single character.
It is not suitable, however, for determining cumulative values such as ancestral
intron counts, since then the contribution of second, third, etc. most probable
histories cannot be neglected. In particular, there is a chance that an intron is
lost in such a pattern that its origin will be placed at a more recent inner node
in the tree. For example, if an intron first appears in the MRCA for Ecdysozoa
(similar example can be constructed for any phylogeny), it is possible that it
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is lost in D. melanogaster and A. gambiae and is only present in C. elegans.
Then Dollo parsimony puts the origin of that intron onto the edge leading to
C. elegans. Conversely, if the intron is lost in C. elegans, then Dollo parsimony
places its origin at the node for Diptera. All methods agree (cf. Table 1) that
such events cannot be too rare because many introns are lost on the branches
leading to the insects and the worm. Another case in point are the 197 introns
that are unique to S. pombe (44% of its introns). Dollo parsimony concludes that
they were gained on that branch, which is doubtful.
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Fig. 4. Likelihoods for gains, losses, and presence at Crown for different characters.

Columns correspond to characters: only those that occur at least seven times are shown.

Character frequencies are displayed on top of the columns. Rectangles show the intron

presence (shaded) or absence (empty) for each character. Shaded triangles show gain

and loss posterior probabilities for each edge, and the posterior probabilities of intron

presence/absence at the Crown taxon.

For characters that appear frequently in the data, Fig. 4 depicts probabilities
for different scenarios. In some cases, the history is clear: if an intron is shared
between D. melanogaster and A. gambiae, then there is a high probability of gain
on the branch leading to Diptera, somewhat smaller one on the exterior branches
leading to the two species, and some very small probabilities for gaining it earlier.
In some cases, the posteriors show a mixture of possible histories: if an intron
is present in D. melanogaster and A. thaliana (there are ten such cases), then it
may have been gained more than once, or lost on several branches — which is
not a surprising conclusion, but it illustrates the difficulty of choosing between
such possibilities based on the intron presence/absence data alone. Notice also
that the all-0 characters have no exciting history: most probably, they never had
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Table 1. Intron evolution according to different methods. Values in the first row of

each table are computed by Dollo parsimony, those in the second are computed by the

formulas of Roy and Gilbert. The third row gives the posterior mean counts, computed

via Eq. (2) assuming 35000 unobserved intron sites. The fourth row gives 95% confi-

dence intervals for the posterior counts computed in a Monte Carlo procedure (see main

text). Tree edges are identified by the nodes they lead to. Edges with a pronounced

imbalance (at least 50%) towards gain or loss are emphasized in boldface.

(a) Intron counts at interior nodes
Method Diptera Ecdysozoa Bilateria Ascomycota Opisthokont Crown

Dollo parsimony (DP) 732 1081 1613 254 1046 978
Local likelihood (LL) 968 2305 3321 667 1903 1967
Posteriors (P) 895 1762 2380 554 1239 1064
P: 95% confidence 824–962 1484–1972 2055–2669 108–880 965–1450 692–1333

(b) Intron gains and losses on external branches

D.mel. A.gam. C.ele. H.sap. S.pom. S.cer. A.tha.
Method gain loss gain loss gain loss gain loss gain loss gain loss gain loss

DP 147 156 137 194 798 411 1844 112 197 1 15 247 2001 46
LL 90 335 91 384 719 1555 849 825 0 167 14 656 1726 760
P 116 288 111 329 855 1150 1163 200 0 104 15 546 2157 286

conf. ±27 ±54 ±24 ±57 ±46 ±235 ±239 ±153 0 0–226 ±3 102–871 ±169 42–487

(c) Intron gains and losses on internal branches

Diptera Ecdysozoa Bilateria Ascomycota Opisthokont
Method gain loss gain loss gain loss gain loss gain loss

DP 87 436 36 568 594 27 3 795 92 24
LL 134 1470 0 1005 1452 35 308 1536 169 232
P 159 1024 141 752 1216 73 274 953 207 32

conf. ±60 187–618 0–256 ±307 ±286 0–151 0–553 ±297 0–413 0–72

an intron present. Nevertheless, the small probabilities of gain and loss events
associated with them add up to visible effects in the mean counts.

Table 1 compares three optimization criteria. Our estimates for intron counts,
gains, and losses are mostly between the two previous estimates. Our likelihood-
based approach gives only slightly more introns at the Crown than parsimony.
The branch leading to C. elegans has more balanced gains and losses, which
result in a net loss that is more modest than in [17]. The H. sapiens branch
has almost six times as many gains than losses, as opposed to the likelihood
calculations of [17] showing a balance. The branch leading to A. thaliana has
a net gain predicted by all three methods. While we predict more gains on
that branch than any of the other methods, the net change is close to what
is computed by parsimony, due to more losses. Among the interior branches,
we predict a significant net gain over the branch leading to the Opisthokont
node, in agreement with parsimony, whereas [17] posit a modest net loss. As for
pronounced biases towards gain or loss, our numbers agree with [17] concerning
a tendency towards mass losses on a number of edges. At the same time, the
mean counts tend to agree with parsimony regarding mass gains. In summary,
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Fig. 5. Estimation error in 100 simulated data sets

our mean counts show more changes along the branches than parsimony, but are
generally less extreme, and picture less intron-rich ancestral species than [17].

In order to assess the accuracy of the predictions in Table 1, we simulated
intron evolution by the Markov model using the parameters optimized on the
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Table 2. Rates of intron gain/loss on some external branches estimated by two meth-

ods: Roy and Gilbert [17] (RG) and our optimization. Rates for gains are given in units

of 10−12, while losses are in units of 10−9 per year. The branch lengths (same as in [17]

to permit comparisons) are as follows: D. melanogaster 250–300 million years (MY),

C. elegans 500–700 MY, H. sapiens 600–800 MY, A. thaliana 1500–2000 MY. The gain

rates in the RG row are based on an assumption of as many intron sites as nucleotide

positions: around 480 thousand, while our calculations are based on the assumption of

35000 unobserved intron sites. This difference amounts to a factor of about 12 between

the two gain rate estimates: in parentheses we give numbers scaled to 480 thousand

intron sites to permit direct comparison.

D.mel. C.ele. H.sap. A.tha.
Method gain loss gain loss gain loss gain loss

RG 0.7–0.9 1.4–2.0 3.4–4.8 1.6–2.2 2.4–3.3 0.4–0.5 2.2–2.9 0.2–0.3
This paper 17–53 3.3–4.0 33–80 1.4–2.0 140–840 0.6–1.5 44–200 0.3–0.7

(scaled) (1.4–4.5) (2.8–6.9) (11.8–72.8) (3.8–17)

original data set. The methods were applied to the simulated data sets to es-
timate intron counts, gains and losses, which could be compared to the exact
values observed in the simulation. We generated 1000 synthetic data sets with
the same number of observed intron sites in order to assess the estimation error
of different methods in our probabilistic model.

Figure 5 plots the results of these experiments for some nodes. (For economy,
only 100 experiments are shown: 1000 points would require a separate graph for ev-
ery method at every node.) Our posterior counts generally perform better than the
other two methods, which is not surprising in the case of Dollo parsimony (since its
assumptions are decidedly different from those of our Markov model), but is more
so for the formulas of Roy and Gilbert [16,17]. These latter usually underestimate
intron gains and systematically overestimate the number of ancestral introns. It is
also noteworthy that the formulas may sometime result in negative values, which
need to be corrected to 0 manually. Dollo parsimony also tends to be biased against
gains on internal edges but may overestimate them on external edges (Bilateria-
H. sapiens edge in particular). It usually underestimates the number of ancestral
introns. Aside from their bias, parsimony-based estimates have remarkably low
variance. (In the simulations, the vector of ancestral intron counts is distributed
multinomially with parameters depending on the likelihood of different charac-
ters. The same holds for the vector of intron gains or the vector of intron losses.
The estimates of the other two methods have more complex distributions.) Our
posterior counts do not seem to have any bias. For ancestral intron counts, the
estimates deviate by at most a few hundred from their real values. Specifically,
the number of ancestral introns at the common ancestor of animals, plants, and
fungi is estimated with an error between (-372) and (+269) in 95% of the cases
and a median error of (+11), whereas Dollo parsimony underestimates it by 85
on average (42–134 in 95% of the cases), and the formulas of [17] overestimate it
by 1100 on average (710–1670 in 95% of the cases). The differences observed in
the simulations are in fact very similar to those in Table 1.
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Table 2 shows actual intron gain/loss rates calculated by optimization. Us-
ing the same actual time estimates for branch lengths as in [17], we computed
the gain and loss rates in units of year−1. Our ranges combine the uncertainty
of branch lengths in years with 95% confidence intervals, calculated using the
parametrized bootstrap procedure mentioned above, involving 1000 simulated
data sets. Loss rates are comparable between previous and current estimates,
but gain rates tend to be higher in our model. Most notably, gain rate on the
branch leading from the MRCA of Bilateria to humans is by at least one mag-
nitude higher than what was estimated in [17].

The Markov model enables predictions about intron dynamics in the future.
Figure 6 compares current intron counts to the stationary probabilities for the
appropriate branches: the Markov process on edge e converges to a ratio of μe : λe

of intron absence:presence. D. melanogaster, A. gambiae, and S. cerevisiae are
very close to equilibrium, but other organisms are farther from it. C. elegans
is still within 50% of its stationary distribution, but S. pombe is losing introns,
while humans and thale cress are heading toward much higher intron densities
(six and four times as many introns as now, respectively).

5 Conclusion

We described probabilistic techniques for analyzing intron evolution, and applied
them to a large data set. The probabilistic analysis assumes a Markov model of
intron evolution, in which every intron site evolves independently, obeying the
same rates, but the rates may be different on different branches. It is essential to
allow for varying rates on branches because the mechanisms underlying intron
gain and loss are fundamentally different, and their intensities vary between dif-
ferent organisms. We demonstrated that the model parameters can be estimated
well from observing introns that evolved according to the model, and that the
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parameters provide sound estimates of ancestral intron counts. We described
how posterior estimates can be computed exactly for ancestral intron counts
and for gain and loss events. In contrast, Qiu et al. [5], relied on a reversible
Markov model in which intron gain and loss rates are constant (for a particular
gene family) across all branches of the tree. They further employed Markov chain
Monte Carlo techniques to estimate posterior distributions.

Our analysis shows a dynamic history of introns, with frequent losses and
gains in the course of eukaryotic evolution. We proposed a procedure for esti-
mating unobserved intron sites. This procedure yields a more sound likelihood
framework than what was used previously. Applied to the data set, which has
7236 orthologous intron sites, an additional 35000 unobserved intron sites were
postulated to explain gains and losses. This equates to an intron site density
of about one in every 12 nucleotides, which may characterize preferential in-
tron insertion sites (such as exonic sequence motifs [5] enclosing the intron). All
but 28 of 1064 introns present at the eukaryotic Crown node survived in at least
one extant species, which means that about one seventh all introns predate the
MRCA of animals, plants, and fungi, and the rest were gained more recently.
Our counts show that about one third of human introns were gained after the
split with Ecdysozoa, another third between that split and the split with fungi,
and the rest mostly predate the MRCA of plants and animals.

It is conceivable that our model’s assumptions of identical distribution and
independence should be replaced by more realistic ones. We plan on explor-
ing richer models in the future by enabling dependence between intron sites in
the same gene, and by permitting varying rates among sites. Furthermore, by
combining data analyzed here with new sequences, especially in light of recent
analyses of introns in fungi [6] and nematoda [7], one can produce more nuanced
results concerning intron evolution by better sampling the phylogenetic tree.
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Abstract. The OMA project is a large-scale effort to identify groups of
orthologs from complete genome data, currently 150 species. The algo-
rithm relies solely on protein sequence information and does not require
any human supervision. It has several original features, in particular a
verification step that detects paralogs and prevents them from being
clustered together. Consistency checks and verification are performed
throughout the process. The resulting groups, whenever a comparison
could be made, are highly consistent both with EC assignments, and with
assignments from the manually curated database HAMAP. A highly ac-
curate set of orthologous sequences constitutes the basis for several other
investigations, including phylogenetic analysis and protein classification.

Complete genomes give scientists a valuable resource to assign functions to se-
quences and to analyze their evolutionary history. These analyses rely heavily on
gene comparison through sequence alignment algorithms that output the level of
similarity, which gives an indication of homology. When homologous sequences
are of interest, care must often be taken to distinguish between orthologous and
paralogous proteins [1].

Both orthologs and paralogs come from the same ancestral sequence, and
therefore are homologous, but they differ in the way they arise: paralogous se-
quences are the product of gene duplication, while orthologous sequences are
the product of speciation. Practically, the distinction is very useful, because as
opposed to paralogs, orthologs often carry the same function, in different organ-
isms. As Eugene Koonin states it [2], whenever we speak of ”the same gene in
different species”, we actually mean orthologs.

1 Previous Large-Scale Efforts

The systematic identification of orthologous sequences is an important prob-
lem that several other projects have addressed so far. Among them, the COG
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database [3], [4] is probably the most established. From BLAST alignments [5]
between all proteins (”all-against-all”), they identify genome-specific best hits,
then group members that form triangles of best hits. Finally, the results are
reviewed and corrected manually.

A further initiative is KEGG Orthology (KO) [6], [7]. KEGG is best known
for its detailed database on metabolic pathways, but as the project evolved,
an effort to cluster proteins into orthologous groups was initiated as well. The
method is somewhat similar to COG: it starts with Smith-Waterman [8] all-
against-all alignments, and identifies symmetrical best hits. It then uses a quasi-
clique algorithm to generate ”Ortholog clusters”, that are used to create the KO
groups, the last step being performed manually.

Finally, we mention here Inparanoid [9], OrthoMCL [10] and EGO (previously
called TOGA) [11]. All three projects exclusively cover eukaryotic genomes. The
two first insist on the inclusion of so-called ”in-paralogs”, sequences that result
from a duplication event that occurred after all speciations. A noticeable short-
coming of Inparanoid is the fact that it only handles pairs of genomes at a time.
As for EGO, although their last release contains almost half a million genes from
82 eukaryotes, many sequences appear in more than one group and many groups
contain paralogs. Because of that, we consider Inparanoid and EGO outside the
present scope and limit our comparisons below to COG, KO and OrthoMCL.

2 Overview of the OMA Project

The project presented in this article is a new approach to identify groups of
orthologs. It has some very specific properties:

– Automated. Unlike COG and KEGG Orthology, the whole workflow does not
require human intervention, thereby insuring consistency, scalability and full
transparency of the process.

– Extensive. The analysis so far has been performed on more than 150 genomes
(Prokaryotes and Eukaryotes), with new ones added by the day1. The goal
is to include all available complete genomes.

– Strict. Consistency checks are performed throughout the workflow, particu-
larly at the integration step of genomic data. The algorithm for the identi-
fication of orthologous proteins excludes paralogs. 98.3% of the groups we
could test are made of bona fide orthologous proteins (Sect. 4.1).

The algorithm for the identification of orthologous groups relies solely on protein
sequence alignments from complete genomes, and hence does not depend on
previous knowledge in terms of phylogeny, synteny information or experimental
data. It is described in detail in the next section.

From the orthologous groups, we build a two-dimensional matrix in which
each row represents an orthologous group and each column represents a species.

1 At the time the final version of this article is submitted, 181 genomes have been
included in the analysis.
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The applications of that matrix are numerous and fall beyond the scope of this ar-
ticle. However, a few are worth mentioning. The rows provide phyletic patterns of
the orthologous groups and can be used for phylogenetic profiling [12]. Parsimony
trees can be constructed from the matrix to give either a phylogenetic tree when
built from the columns, or protein families when built from the rows. We be-
lieve that both trees are very valuable contributions, and they will be presented,
among others, in separate articles. Also, a large set of orthologous sequences is
a prerequisite for the construction of reliable phylogenetic distance trees.

3 Methods

The construction of the matrix is performed in four steps. In the first one, ge-
nomic data is retrieved, checked for consistency and integrated. The second step
consists of Smith-Waterman [8] protein alignments between all proteins (”all-
against-all”) followed by the identification of stable pairs, essentially what is
sometimes also referred to as ”symmetrical best hits”. In the third step, the
algorithm verifies every stable pair to ensure that it represents an orthologous
relationship, not a paralogous one. Finally, in the fourth step, groups of orthol-
ogous proteins are formed from cliques of verified stable pairs.

3.1 Genome Data Retrieval, Verification and Integration

Complete genomes with protein sequence information are retrieved from Ensem-
ble [13] and GenBank [14] and checked for consistency, then imported into Dar-
win [15], our framework. The consistency verification is extensive, and includes
comparison between DNA and amino acid sequence, check for presence of start
and stop codon, removal of fragments shorter than 50 amino acids, removal of du-
plicated sequences (sequences with >99% identity), verification of the total num-
ber of entries with HAMAP [16] (or GenBank/Ensembl for eukaryotes), and com-
parison with sequences present in SwissProt [17]. In case of alternative splicing,
only the largest set of non-overlapping splice variants is kept for further analysis.

3.2 All-Against-All

Every protein sequence is aligned pairwise with every other protein sequence
from a different organism using full dynamic programming [8]. The alignments
were performed with GCB PAM matrices [18], using, for each alignment above
noise level, the matrix corresponding to the PAM distance that maximizes the
score, in a maximum likelihood fashion [19]. Alignments with score below 198
(70 bits, which typically corresponds to an E-value around 1.3e-16) or with
length below 60% of the smaller sequence are considered not significant, and
are discarded. The use of BLAST [5] was evaluated, but in the present case, we
considered the speed increase not sufficient to compensate the loss in sensitivity
[20]. Note that this view is shared by the teams behind KEGG Orthology [7]
and STRING [21].
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From the alignments, stable pairs are identified. That is essentially the idea
behind what COG, among others, call ”symmetrical best hits”, that is, a protein
pair in two different organisms that have each other as best match. However, as
opposed to them, we improve robustness by keeping matches that have scores
not significantly lower than the best match. Concretely, a stable pair can be
formed between two proteins in two different organisms if, in both directions,
the score of the alignment is not less than 90% of the best match.

3.3 Stable Pairs Verification

At this point, most stable pairs are expected to link two orthologous proteins,
because orthologs usually have a higher level of similarity than paralogs. How-
ever, in case the corresponding ortholog of a particular protein is missing in some
species (e.g. the organism lost it during evolution), a stable pair might be formed
between that protein and a paralogous sequence, thus linking two proteins that
belong to different orthologous groups. Such instances can be detected through
the comparison to a third species that carries orthologs to both proteins (Figs.
1, 2). Therefore, each stable pair is verified through an exhaustive search against
every other genome for such a scenario, and stable pairs corresponding to par-
alogy are discarded (Fig. 4). A more formal description of this algorithm, with
proofs and examples are part of a separate publication.

3.4 Group Construction from Cliques of Verified Stable Pairs

The last step consists of orthologous groups identification from all verified stable
pairs. The problem can be seen as a graph where proteins are represented by
vertices and stable pairs by edges. In such a graph, an orthologous group is
expected to form a fully connected subgraph. Thus, the algorithm iteratively
looks for the maximal clique, groups the corresponding proteins and removes
them from the graph. It runs until no more verified stable pairs are left. Finding
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maximal cliques is a difficult problem (NP complete). The implementation of
clique finding in Darwin [15] is based on the vertex cover problem and is a very
effective clique approximation, which runs in reasonable time [22].

3.5 Tests for Accuracy and Completeness

On a project of such large size, it is crucial to ensure that all steps have been
performed correctly, and that nothing is missing. With more than a hundred
computers working around the clock for months, the probability of technical
and operational failures becomes non-negligible, and must be proactively man-
aged. We have included a number of tests that ensure quality all along the
procedure described above. One test verifies that alignments are not missing
through random sampling of 50,000 alignments per pair of genomes. Another
test completely recomputes all recorded alignments of a pair of genomes, which
is useful to detect (rare) errors due to hardware failure. A signature of the ge-
nomic database is computed at the end of each run to insure that memory was
not corrupted during the computation. Yet another test verifies consistency of
the results by looking for triangles of stable pairs that have a missing edge. More
than once, these tests have revealed missing data, faulty hardware, and bugs in
our programs.

4 Results and Discussion

The last OMA release classifies 501,636 proteins from 150 genomes into 111,574
orthologous groups (called OMA groups below). That covers 65.81% of all pro-
teins contained in those genomes. The distribution of group size is such that most
groups are small (Fig. 3). To a large extent, that is an obvious consequence of
the large biodiversity among the included genomes. However, a technical reason
can also explain part of that phenomenon: relatively few higher eukaryotes, and
in particular plants, have been sequenced and included at this point, but they
represent a significant portion of the total genes. All plant-specific genes in the
matrix currently belong to groups of size two, simply because only two plants
(Arabidopsis thaliana and Oryza sativa) are present. This effect is also reflected
by a lower coverage of some eukaryotes. Therefore, we expect the group size and
coverage to increase as more genomes are included.

The average group size is compared to other projects in Table 1. The differ-
ences are considerable. They can be explained by at least four factors: i) Quality
of the algorithm. ii) Difference in the treatment of paralogous sequences. COG,
KO, HAMAP and OrthoMCL often classify more than one protein per species
into the same group. These proteins cannot have an orthologous relationship,
by definition. In the best cases, those proteins are in-paralogs, genes that result
from a duplication after all speciations, where justification for such inclusion is
usually that in-paralogs are orthologous to all other proteins in the group. iii)
Human validation. The practical problems of managing many groups are likely
to create a bias toward fewer, larger groups (that can be observed in Table 1).
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iv) Variation in the species composition and more generally in the biodiversity
of the included sequences.

In that context, the size of the groups assigned by our algorithm does not
appear unreasonable.

Fig. 3. Histogram of orthologous groups size and repartition of the 111,574 groups

among kingdoms

Table 1. Comparison of some statistics accross projects. Note that KO and HAMAP

only include partial genomes.

Project Name Release #Species #Seqs #Groups Average Coverage
Group Size

COG 2003 66 138,458 4,873 28.4 75%
KO 22/Apr/2005 244 284,519 5,795 49.1 n/a
HAMAP 30/Apr/2005 876 26,977 1,071 25.2 n/a
OrthoMCL I=1.5, 2003 7 47,668 7,265 6.6 47%
OMA 13/May/2005 150 501,636 111,574 4.5 66%

4.1 Validation

The quality of the groups resulting from our algorithm must be ensured. The
statistics above about group size and genomes coverage constitute a first check,
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but more specific analysis of the results are desirable. This section presents the
results from two further verifications, one using Enzyme Classification nomen-
clature, the other comparing our results with manual ortholog assignments from
expert curators.

Function Validation Using Enzyme Classification. Enzyme Classification
(EC) numbers are assigned based on the enzymatic activity of proteins. Since
orthologs usually keep the same function, we expect in general that enzymes
belonging to the same OMA group all have identical EC number. The Swiss
Institute of Bioinformatics maintains the database [23] on Enzyme nomenclature
that served us as reference (Release 37.0 of March 2005). First, the proteins
that have more than one EC number (multi-functional enzymes, about 3% of
all sequences in the EC database) were removed from the analysis. Then, every
OMA group with at least two proteins that could be mapped to the EC database
were selected for comparison.

There were 2,825 such groups out of 111,574 groups (2.5%). Of those, 2750
groups (97.3%) mapped to a single EC class. That compares very favorably to
OrthoMCL, that has only 86% of its groups consistent with the EC assignments
[10], although in their analysis, multi-functional enzymes were not excluded2.
The result obtained for our method is particularly good if we consider that not
all orthologs have identical function [24], and that the EC database is most
probably not completely error-free.

Table 2. Comparison with HAMAP families

OMA Groups corresponding to HAMAP families: 1993 100%
— mapping to a single family: 1959 98.3%
— mapping to more than one family: 34 1.7%

HAMAP families corresponding to OMA Groups: 974 100%
— mapping to a single group: 355 36.4%
— mapping to more than one group: 619 63.6%

Comparison with HAMAP. Our groups were also compared with those of
the HAMAP project [16]. As stated on their website, the HAMAP families are
a collection of orthologous microbial proteins generated manually by expert cu-
rators. The comparison was done as following: in each HAMAP family, the in-
paralogs were removed. OMA groups that had at least two proteins linkable to
HAMAP were considered. Conversely, the HAMAP families with at least two
proteins linkable to OMA groups were kept. Then, the correspondence between
both sets of groups was assessed (Table 2). The results clearly show that while

2 To compare the results with OrthoMCL in all fairness, the same analysis was per-
formed on an OMA release from 26 eukaryotes, without removing multi-functional
enzymes. With 1054 out of 1082 groups (97.4%) mapping to a single EC class, there
was practically no difference.
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our algorithm generates more/smaller groups than HAMAP, these groups are
almost always consistent with the HAMAP assignments, in the sense that they
each map to a single family. In fact, the numbers are such that slightly more
than a third of the HAMAP families (347 out of 974) have a 1:1 correspondence
to our groups, while most of the other two thirds are covered by typically two
or three OMA groups. Considering that HAMAP families and OMA groups are
constructed using radically different methodologies, this level of consistency is
remarkable.

Fig. 4. Paralogs inside the HAMAP family MF 00037 (distances in PAM units)

The question that naturally arises from the comparison is whether it is our
algorithm that has an excessive tendency to split orthologous groups or it is
HAMAP that forms too large families. We performed some case-by-case analysis
that revealed dubious classification on both sides: we have found several instances
of OMA groups that have been split as a result of missing stable pairs (typically
caused by alignment scores or length below our current threshold). Conversely,
we found instances of sequences very likely to be paralogous within the same
HAMAP family (Fig. 4). At this point, we are still investigating the relative
merits of tighter versus larger groups.

4.2 Computational Cost

The all-against-all is the most time-consuming part of the computation. From
the 150 genomes, we have 762,265 proteins producing about 2.85e11 pairwise
alignments. In terms of the dynamic programming algorithm, the number of
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cells is 4.16e16 (where a cell corresponds to the computation of the table entry
in the dynamic programming algorithm to align two sequences). We use Darwin
[15] in parallel on more than 200 CPUs, which gives us a total capacity of about
1.9e13 cells/h (a Pentium IV at 3.2 GHz can perform about 2.2e10 cells/h).
Hence, under such conditions, about 91 days would be required to compute the
all-against-all. In practice, it took us longer, because of the consistency checks
and changes in the data or programs. As for the stable pair verification and
clique algorithm, they can be computed in about two days on a single machine.

4.3 Availability of the Results

The project homepage can be reached under http://www.cbrg.ethz.ch/oma.
The list of species, progress of the all-against-all and OMA groups statistics are
updated continuously. We offer a prototype online interface that enables users
to browse through the results online.

5 Open Problems

As stated previously, the project is ongoing and some issues remain to be ad-
dressed. One of them concerns how to handle multi-domain proteins. The ques-
tion is important, because the majority of proteins in Prokaryotes and Eukary-
otes consist of at least two domains [25], where a domain is defined as an inde-
pendent, evolutionary unit that can either form a single-domain protein or be
part of a multi-domain one. Currently, our algorithm classifies a multi-domain
protein with the group of its highest scoring domain. While that does not cause
disruptive harm, it gives incomplete information about that multi-domain pro-
tein. In terms of consistency, it is not desirable to have that protein grouped
with orthologs of its best scoring domain, while not grouped with orthologs of,
say, its second best scoring domain. Either the focus is on domain orthology and
it should be grouped to both, or the focus is on whole protein orthology and it
should be grouped with none.

Lateral gene transfer is also a potential source of complications. Despite the
abundant literature on the subject, the actual extent of this phenomenon remains
unclear. Here as well, the effect on our group building process is non disruptive,
xenologs are currently merely included in orthologous groups, but might cause
problems in applications sensitive to phylogeny (e.g. phylogenetic trees). We are
working on methods to systematically identify potential cases of lateral gene
transfer a posteriori. The details and conclusions of this work will be the object
of a separate publication.

6 Conclusion

The systematic identification of orthologuous sequences is an important prob-
lem in bioinformatics. In this article, we have presented OMA, a new large-scale
project to cluster proteins into orthologous groups, where both the amount of
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data (150 genomes) and amount of computation (>500,000 CPU hours) jus-
tifies the large-scale description. Strict verification and consistency checks are
performed throughout the workflow. The orthologous group construction is per-
formed by an algorithm with several original features: it estimates a PAM dis-
tance between pairs of sequences matching significantly, it extends the concept
of symmetrical best hit by considering all possible pairs of top matches within
a tolerance factor, it detects and discards stable pairs connecting paralogous se-
quences and finally it identifies cliques of stable pairs to construct the groups.
In contrast to most other projects, it does not rely on human validation. The
resulting groups are highly consistent with EC assignments whenever applicable.
They are also highly consistent with the manually curated database HAMAP,
although our algorithm seems to have a tendency to split orthologous groups
excessively. That issue, along with handling of multi-domain proteins and detec-
tion of lateral gene transfer events are the main problems that remain unsolved
for now. However, even in its present state, we are confident that the project
is an important contribution toward better identification of orthologous groups,
and that it constitutes a solid basis for future work.
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Abstract. There is widespread interest in comparative genomics in de-
termining if historically and/or functionally related genes are spatially
clustered in the genome, and whether the same sets of genes reappear
in clusters in two or more genomes. We formalize and analyze the desir-
able properties of gene clusters and cluster definitions. Through detailed
analysis of two commonly applied types of cluster, r-windows and max-
gap, we investigate the extent to which a single definition can embody
all of these properties simultaneously. We show that many of the most
important properties are difficult to satisfy within the same definition.
We also examine whether one commonly assumed property, which we call
nestedness, is satisfied by the structures present in real genomic data.

1 Introduction

Comparisons of the spatial arrangement of genes within a genome offer insight
into a number of questions regarding how complex biological systems evolve and
function. Spatial analyses of orthologous genomes focus on elucidating evolution-
ary processes and history, and on constructing comparative maps that facilitate
the transfer of knowledge between organisms [1,2]. Conserved segments between
different genomes have been used extensively to reconstruct the history of chro-
mosomal rearrangements and infer an ancestral genetic map for a diverse group
of species [3,4], as well as to provide novel features for new phylogenetic ap-
proaches. Genome self-comparisons reveal ancient large-scale or whole-genome
duplication events [5]. Finally, spatial comparative genomics can also help predict
protein function and regulation. In bacteria, conserved gene order and content
have been used for prediction of operons, horizontal transfers, and more generally
to help understand the relationship between spatial organization and functional
selection [6–11].

A prerequisite to all of these tasks is the identification of genomic regions
that share a common ancestor. Although offspring genomes immediately follow-
ing speciation or a whole-genome duplication will have identical gene content
and order, over time large and small scale rearrangements will obscure this re-
lationship, leading to pairs of regions, or gene clusters, that share a number of
homologous genes, but where neither order nor gene content is strictly conserved.
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To identify such diverged homologous regions it is necessary to define the
spatial patterns suggestive of common ancestry, and then design a search algo-
rithm to find such patterns. The exact definition of the structures of interest is
critical for sensitive detection of ancient homologies without inclusion of false
positives. It is difficult to characterize what such regions will look like, however,
since in most cases evolutionary histories are not known. Consequently, cluster
definitions are generally based upon intuitive notions, derived either from small,
well-studied examples (e.g., such as the MHC region [12–14]), or from ideas
about how rearrangements of genomes proceed. However, not much is known
about the rates at which different evolutionary processes occur, and the little
that is known is often based (somewhat circularly) on inferred homology of chro-
mosomal segments.

The properties underlying existing cluster definitions are generally not stated,
and the dimensions along which they differ have been analyzed in only a cur-
sory manner. As a result, the formal tradeoffs between different models have
been difficult to understand or compare in a rigorous way. Most cluster def-
initions are constructive, in the sense that they supply an algorithm to find
clusters but do not specify explicit cluster criteria. In order to verify that an
algorithm will identify all clusters satisfying the underlying intuitive criteria,
however, these criteria must be stated formally. A few attempts have been made
to formally define a gene cluster, but in these cases the focus tends to be on
the design of an efficient and correct search algorithm, rather than on select-
ing a definition that captures those underlying intuitions. In addition to the
cluster definition, the design of the search procedure may implicitly lead to ad-
ditional unexpected or even undesirable properties, which would not be detected
without explicit consideration of the cluster criteria. Finally, analysis of cluster
properties can be useful for determining which characteristics actually reflect the
types of structures found in real genomes, and thus which will best discriminate
truly homologous regions from background noise (clusters of genes that occur
by chance).

The goal of this paper is to characterize desirable properties of clusters and
cluster definitions, in order to develop a more rigorous understanding of how
modeling choices determine the types of clusters we are able to find, and how
such choices influence the statistical power of tests of segmental homology. In
Section 2, we describe the formal models and definitions discussed in this work.
In Section 3, we present a set of properties upon which many existing gene
cluster definitions, algorithms, and statistical tests are explicitly or implicitly
based. We also propose additional properties that we believe are desirable, but
are rarely stated explicitly. Through detailed analysis of two commonly applied
types of cluster, r-windows and max-gap, we investigate the extent to which a
single definition can embody all of these properties simultaneously. In Section 4,
we examine whether one property that is implicitly assumed in many analyses,
which we call nestedness, is actually satisfied by the structures present in real
genomic data.
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2 Models and Cluster Definitions

2.1 Models

We employ a commonly used model in which a genome is represented as an or-
dered set of n genes: G = (g1,. . .,gn). We assume a single unbroken chromosome,
in which genes do not overlap. The distance between two genes in this model is
simply the number of genes between them. In a whole-genome comparison, we
are given two genomes G1 and G2, and a mapping between homologs in G1 and
G2, where m of the genes in G1 have homologs in G2 (and vice versa). In this
paper, we assume that each gene has at most one homolog in the other genome.
We are interested in finding sets of homologs found in proximity in two different
genomes (or possibly in two distinct regions of the same genome).

This model can be conceptualized in a number of ways, shown in Figure 1.
Consider two genomes G1 = 1*2*34**56789 and G2 = *3*14*2567*98, where
the integers correspond to homologous gene pairs, and the stars indicate genes
with no homolog in the other genome. Figure 1(a) shows a comparative map
representation, in which homologous pairs are connected by a line. Alternatively,
in a dot-plot (Figure 1(b)), the horizontal axis represents G1, the vertical axis
represents G2, and homologous pairs are represented as dots in the matrix.
Finally, this data can be converted into an undirected graph (Figure 1(c)), where
vertices correspond to homologous gene pairs. Two vertices are connected by
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Fig. 1. Three ways in which to visualize a whole-genome comparison. Integers and stars

denote genes, with stars denoting genes with no homolog in the other genome. (a) A

comparative map. Lines show the mapping between homologous genes. (b) A dot plot

showing the same information in a matrix format. Columns represent genes in G1 and

rows represent genes in G2. A matrix element is filled with a black circle if the genes are

homologous, and empty otherwise. (c) A graph in which vertices represent homologous

gene pairs, and edges connect vertices if the corresponding genes are close together in

both genomes. In this example, edges connect genes if the sum of the distances between

the genes in both genomes is no greater than two.
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an edge if the corresponding genes are close together in both genomes, where
“close” is determined based on a user-defined distance function and threshold.

2.2 Cluster Definitions

A number of cluster definitions and algorithms have been proposed. In this paper
we primarily focus on r-windows and max-gap clusters, two cluster definitions
that are used in practice [6,7,15,16,17,9,10], but briefly describe other definitions
as well.

An r-window cluster is defined as a pair of windows of r genes, one in each
genome under consideration, in which at least k genes are shared [18,19,15]. This
corresponds to a square in the dot-plot with sides of length r, which contains
at least k homologs. For example, for a window model with r = 5 and k = 4,
two clusters can be found in the example genome in Figure 1(b): {5,6,7,9}
(dotted box) and {6,7,8,9} (solid box). We distinguish between the homologs
shared in both instances of the cluster (the “marked” genes) and the intervening
“unmarked” genes that occur in only one instance of the cluster (but which may
have a homolog elsewhere in the genome).

The max-gap cluster definition also ignores gene order and allows insertions
and deletions, but does not constrain the maximum length of the cluster to r
genes. Instead, a max-gap cluster is described by a single parameter g, and is
defined as a set of marked genes where the distance (or gap) between adjacent
marked genes in each genome is never larger than a given distance threshold,
g [20,21]. When g = 0, max-gap clusters are referred to as common intervals
[22–24]. When the maximum gap allowed is g=1, two maximal max-gap clusters
are found in the example genome in Figure 1(b): {1,2,3,4} (dashed box) and
{5,6,7,8,9} (not shown). A max-gap cluster is maximal if it is not contained
within any larger max-gap cluster. Correct search algorithms for this definition
require some sophistication. Bergeron et al. originally developed a divide-and-
conquer algorithm to conduct a whole-genome comparison, and efficiently detect
all maximal max-gap clusters [20]. Many groups design heuristics to find max-
gap clusters, but such methods are not guaranteed to find all maximal max-gap
clusters.

Other definitions include that of Calabrese et al. [25], in which the distance
between each pair of homologs is evaluated as a function of the gap size in
both genomes. Unlike the max-gap definition, which only requires that in both
genomes the distance to some other marked gene in the cluster is small, this
method requires that all marked genes that are adjacent in genome G1 also be
close in genome G2, but not vice versa. A very different approach by Sankoff et
al. [26] explicitly evaluates a cluster (or segment) by a weighted measure of
three properties: compactness, density, and integrity. They seek a global par-
tition of the genome into segments such that the sum of segment scores is
minimized. Clusters have also been defined in terms of graph-theoretic struc-
tures (e.g., Figure 1(c)), such as connected components [27] or high-scoring
paths [28,29]. Finally, a variety of heuristics have been proposed to search for
gene clusters [30,25,31,32,33,34,29,11], the majority of which are specifically de-
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signed to find sets of genes in approximately collinear order (i.e., forming a rough
diagonal on the dot-plot).

3 Cluster Properties

Many of the cluster properties underlying existing definitions derive from the
processes that lead to genome rearrangements. As genomes diverge, large-scale
rearrangements break apart homologous regions, reducing the size and length of
clusters. Gene duplications and losses cause the gene complement of homologous
regions to drift apart, so that many genes will not have a homolog in the other
region, and gene clusters will appear less dense. Smaller rearrangements will
disrupt the gene order and orientation within homologous regions. Thus, clusters
are often characterized according to their size, length, density, and the extent to
which order and orientation are conserved. We discuss these properties in more
detail below, as well as a number of additional properties that are rarely stated
explicitly, but that we argue are nonetheless desirable.

Size: Almost all methods to evaluate clusters consider the size of a cluster,
i.e., the number of marked genes contained within it. In general it is assumed
that the more homologs in a cluster, the more likely it is to indicate common
ancestry rather than chance similarities. An appropriate minimum size threshold
will depend, however, on the specific cluster definition. For example, a cluster of
four homologs in which order is conserved may be less likely to occur by chance,
and thus more significant than an unordered cluster of size four.

Length: The length of a cluster, defined with respect to a particular genome,
is the total number of marked and unmarked genes contained within it. For
example, in Figure 1(b), the upper left cluster is of size four, and spans two
unmarked genes, so is of total length six. In a whole-genome comparison, the
number of unmarked genes spanned by the cluster in each genome may differ.
However, if the processes that degrade a cluster are operating uniformly, then
the length of the cluster in both genomes should be similar. This similarity of
lengths is implicitly sought by the length constraint of r-windows, and explicitly
sought in the clustering method of Hampson et al. [33].

Density: Although over time gene insertions and losses will cause the gene con-
tent of homologous regions to diverge, in most cases we expect that significant
similarity in gene content will be preserved. Thus, the majority of existing ap-
proaches attempt to find regions that are densely populated with homologs. We
define the global density of a cluster as its size divided by its length. For exam-
ple, in Figure 1(b), the first max-gap cluster is of size four and length six, so
has a density of 2/3. For a fixed value of r, the minimum global density of an
r-window is set by choosing the parameter k. The only way to set a constraint
on the global density of a max-gap cluster, on the other hand, is to reduce g,
which will also reduce the maximum length of a cluster.

Even when a minimum global density is required, regions of a cluster may not
be locally dense: a cluster could be composed of two very dense regions separated
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by a large region with no homologs. In this case, it might seem more natural
to break the cluster into two separate clusters. Density as we have defined it
here reflects the average gap size, but does not reflect the variance in gap sizes.
The gap between adjacent marked genes in an r-window can be as large as r−k,
whereas max-gap clusters guarantee that the maximum gap will be no more
than g. Note that the two definitions have switched roles: the local density is
easily controlled by the parameter g for max-gap clusters but there is no way to
constrain the local density of r-window clusters without also further constraining
the maximum cluster length. This trade-off between global and local density
gives a simple illustration of how it can be difficult to design a cluster definition
that satisfies our basic intuitions about cluster properties.

Order: For whole-genome comparison, a cluster is considered ordered if the
homologs in the second genome are in the identical or opposite order of the
homologs in the first genome. For example, consider the two genomes shown
in Figure 1(b). The clusters {5,6,7} and {8,9} are ordered, but {1,2,3,4} is
not. Many cluster definitions require a strictly conserved gene order [6,31,11].
Over time, however, inversions will cause rearrangements, and thus conserved
gene order is often considered too strict a requirement. In order to allow some
short inversions, Hampson et al. [32] explicitly parameterize the number of or-
der violations that are allowed in a cluster. A number of groups use heuristic,
constructive methods that either implicitly enforce certain constraints on gene
order, or explicitly bias their method to prefer clusters that form near-diagonals
in the dot plot [25,34,29,17]. The remainder, including r-windows and max-gap
clusters, completely disregard gene order. As we will see, however, though a
number of groups state that they ignore gene order, constraints on gene order
are often unintended consequences of algorithmic choices (see nestedness).

Orientation: Conserved spatial organization in bacterial genomes often points
to functional associations between genes. In particular, clusters of genes in close
proximity, with the same orientation, often indicate operons. In whole-genome
comparison of eukaryotes, similarities in gene orientation can provide additional
evidence that two regions share a common ancestor. To the best of our knowl-
edge, however, except for the method of Vision et al. [29], in which changes in
orientation decrease the cluster score, existing definitions either require all genes
in a cluster to have the same orientation, or disregard orientation altogether.

Temporal Coherence: Temporal information can be used to evaluate the sig-
nificance of a putative homologous region identified through whole-genome com-
parison. If a set of homologous genes all arose through the same speciation or
duplication event, then the points in time at which each homolog pair diverged
will be identical, and consequently we would expect our estimates of these di-
vergence times to be similar. However, all existing methods to find clusters are
based solely on spatial information, and divergence times have been used only
to estimate the age of a duplicated block identified based on spatial organiza-
tion [6,35], but not to assess the statistical significance of a cluster. In theory,
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combined analysis of temporal and spatial information could be used, for exam-
ple, to increase our confidence that a region is the result of a single large-scale
duplication event. However, due to the large error bounds that must be as-
sociated with any sequence-based estimate of divergence times [36,37,38], the
practicality of such an approach is as yet unclear.

Nestedness: For whole-genome comparison, one cluster property that is gen-
erally not considered explicitly, but may be assumed implicitly, is nestedness. A
cluster of size k is nested if for each h ∈ 1 . . . k − 1 it contains a valid cluster
of size h. Intuitively it may seem that any reasonable cluster definition should
have this property. In fact, clusters with no ordering constraints are not nec-
essarily nested. For example, Bergeron et al. [20] state a formal definition of
max-gap clusters, and prove that there are maximal max-gap clusters of size k
which do not contain any valid sub-cluster of size 2..k−1. For example, when
g = 0 they present a non-nested max-gap cluster with only four genes. The se-
quence of genes 1234 on one genome and 3142 on the other form a max-gap
cluster of size four which does not contain any max-gap cluster of size two or
three. Thus, nested max-gap clusters comprise only a subset of general max-gap
clusters found through whole-genome comparison.

There are no definitions that explicitly require that clusters be nested; rather,
greedy search algorithms implicitly limit the results to nested clusters. Greedy
algorithms use a bottom-up approach: each homologous gene pair serves as a
cluster seed, and a cluster is extended by looking in its chromosomal neighbor-
hood for another homologous gene pair close to the cluster on both genomes
[25,31,33,39]. It can be shown that any greedy search algorithm that constructs
max-gap clusters iteratively, i.e., by constructing a cluster of size k by adding a
gene to a cluster of size k−1, will find exactly the set of all maximal nested max-
gap clusters, as long as it considers each homologous gene pair as a seed for a
potential cluster. In such cases, although order is not explicitly constrained, the
search algorithm enforces implicit constraints on gene order: nested clusters can
only get disordered to a limited degree. In most cases, however, such constraints
are not acknowledged, and perhaps not even recognized.

Disjointness: If two clusters are not disjoint, i.e., the intersection of the marked
genes they contain is not empty1, our intuitive notion of a cluster may correspond
more closely to the single island of overlapping windows than to the individual
clusters. For example, Figure 1(b) shows two windows for which r=5 and k=4:
{5,6,7,9} and {6,7,8,9}. Although both clusters contain genes 6, 7, and 9,
there is no window of length five that contains all five of the genes. Thus, r-
windows are not always disjoint. Indeed, it is surprisingly hard to find a cluster
definition that guarantees that all clusters will be disjoint. The majority of defini-
tions lead to overlapping clusters that must be merged or separated in an ad-hoc
post-processing step for use by algorithms that require a unique tiling of regions.
The only definition for which maximal clusters have been shown to be disjoint
1 Note that it is possible, however, for two disjoint clusters to have overlapping spans

in one of the genomes, as long as they do not share any homologs.
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is the max-gap cluster [20]. However, when adding additional constraints in ad-
dition to the maximum gap size, disjointness is quickly forfeited. For example,
consider the consequences of requiring conserved order when looking for max-gap
clusters in Figure 1(a). With a maximum gap of g =2, three clusters with con-
served order are identified {1,2}, {3,4,5,6,7,8}, {3,4,5,6,7,9}. Although the
last two clusters overlap, they cannot be merged without breaking the ordering
constraint (due to the inversion of the segment containing genes 8 and 9).

More generally, a lack of disjointness strongly suggests that the cluster defini-
tion is too constrained. In the r-window example, these clusters are not disjoint
precisely because the definition artificially constrains the length of a cluster. In
the second example, the clusters were not disjoint because a definition with a
strict ordering constraint was not able to capture the types of processes, such as
inversions, that created the cluster.

Isolation: If we observe a cluster with some additional homologous pairs in close
proximity to its borders we might feel that the cluster border was arbitrary, and
should extend to cover the neighboring island of genes. Thus, we propose that
cluster definitions should guarantee that clusters will be isolated, that is: the
maximum distance between marked genes in a cluster should always be less
than the minimum distance between two clusters. A maximum-gap constraint
guarantees that clusters will be isolated, but only barely—the gap within a
cluster may be as large as g, whereas the gap separating two clusters may be
just g+1.

Symmetry: For whole-genome comparison, a desirable property that is rarely
considered explicitly is whether the definition is symmetric with respect to
genome. In some cases, such as the definition proposed by Calabrese et al. [25],
a cluster is defined in such a way that whether a set of genes form a valid cluster
may depend on whether genome G1 or genome G2 is represented by the vertical
axis in the dot-plot. Put another way, the set of clusters identified will differ de-
pending on which genome is designated as the reference genome. A surprisingly
large proportion of constructive definitions are not symmetric. These clustering
algorithms require the selection of a reference genome even when there is no
clear biological motivation for this choice. Definitions that are symmetric with
respect to genome include r-windows and max-gap cluster definitions, as well as
algorithms that represent the dot-plot as a graph and use a symmetric distance
function [27,29].

4 Are Max-Gap Clusters in Genomic Data Nested?

Cluster definitions that constrain the gap size between marked genes are widely
used in genomic studies [30,6,40,7,16,17,9,41,10,34,29]. In the majority of cases,
however, clusters are detected with a greedy algorithm, whereby larger clusters
are identified by extending smaller clusters. Remember that greedy methods
find the subset of max-gap clusters that are nested and that nestedness implies
a certain degree of ordering. It is not clear whether greedy methods are used for
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Table 1. The genomes compared (G1 and G2), the total number of genes in each

genome (n1 and n2, respectively), and the number of orthologs identified, excluding

ambiguous orthologs (m)

G1 G2 n1 n2 m

E. coli B. subtilis 4, 108 4, 245 1, 315
Human Mouse 22, 216 25, 383 14, 768
Human Chicken 22, 216 17, 709 10, 338

for i= 1..n do // i iterates through all genes in G1

C = {i}; // C is the cluster being constructed

L1 = R1 = i; // Li and Ri are the left/rightmost positions in C on Gi

L2 = R2 = p(i); // p(i) indicates the position of gene i’s homolog in G2

j = L1-g-1; // j iterates through all genes close to C on G1

while (L1-g-1 ≤ j ≤ R1+g+1) do

if j /∈ C and p(j) ∈ {L2-g-1, . . ., R2+g+1} // if j is close to C in G2

C = C ∪ j; // add it to C

L1 = min(L1,j); L2 = min(L2,p(j));

R1 = max(R1,j); R2 = max(R2,p(j));

j = L1-g-1; // start the search over

else

j++;

end

end

clusters = clusters ∪ C;

end

Fig. 2. Pseudo-code for a greedy, bottom-up algorithm to find nested max-gap clusters

computational convenience or because researchers believe that nested clusters
better capture the biological processes of interest. In this section, we investigate
the practical consequences of choosing one search procedure over the other. We
compare three pairs of genomes to determine the proportion of max-gap clusters
in real genomes that are actually nested.

Whole-genome comparisons of three pairs of genomes at varying evolution-
ary distances were conducted. The first comparison was of E. coli and B. sub-
tilis, with a mapping of orthologs between the two genomes obtained from the
GOLDIE database [30]. The other two comparisons were of human and mouse,
and human and chicken, with ortholog mappings obtained from the InParanoid
database [42]. The total number of genes in each genome, and the number of
orthologs identified, is given in Table 1.

The GeneTeams software, an implementation of the top-down algorithm of
Bergeron et al. [20], was used to identify all maximal max-gap clusters shared be-
tween the two genomes, for g ∈ {1, 5, 10, 15, 20, 30, 50}. In addition, we designed
a simple bottom-up, greedy algorithm to identify all maximal nested max-gap
clusters (Figure 2). This algorithm considers each pair of orthologs in turn, treat-
ing each as a cluster seed from which a greedy search for additional orthologs
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Fig. 3. Comparison of the set of nested clusters to the set of gene teams, for g ∈
{1, 5, 10, 15, 20, 30, 50}. (a) The fraction of gene teams that are not nested. (b) The

fraction of maximal nested clusters that are not gene teams.

is initiated. Occasionally different seeds may yield identical clusters. Any such
duplicate clusters are filtered out, as are non-maximal nested clusters (clusters
strictly contained within another nested cluster). However, overlapping clusters
(e.g., properly intersecting sets) are not merged together, since the resulting
merged clusters would not be nested.2

For the bacterial comparison, for all gap values except g=50, both methods
found the same set of clusters, i.e., all gene teams were nested. In all eukary-
otic comparisons, however, at least one non-nested gene team was identified.
Nonetheless, the percentage of teams that were not nested remained low for all
comparisons, ranging from close to 0% to about 2% as the gap size was increased
(Figure 3(a)). The percentage of nested clusters that were not gene teams (in
other words, clusters that could have been extended further if a greedy algorithm
had not been used), was also close to zero for small gap sizes, but increased more
quickly, peaking at almost 15% for a gap size of g=50 (Figure 3(b)). In contrast,
in randomly ordered genomes, although large gene-teams are much rarer, a much
higher percentage are not nested (data not shown).

Another quantity of interest is the number of genes that would be missed
altogether if a greedy approach is used rather than a top-down algorithm; that
is, the number of genes that are found in a large gene team but not in a large
nested cluster. For a minimum cluster size of two, very few genes are missed:
the number of genes missed remains under 20 for both eukaryotic datasets, no
matter how large the gap size (Figure 4, circles). For a more realistic minimum
cluster size of seven, however, the number of missed genes rises more quickly,

2 It is unclear whether those who employ a greedy heuristic merge all overlapping
clusters or not, since such heuristics are generally specified quite vaguely, if at all.
However, in our datasets, only a small percentage of clusters detected with the greedy
algorithm overlapped (e.g., 2% in the human/chicken comparison).
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peaking near 80 for the human/chicken comparison (Figure 4, triangles), and
near 120 for the bacterial comparison (data not shown).

The gene teams that are not nested tend to be the larger clusters. For exam-
ple, Figure 5 compares the distribution of gene teams sizes to the distribution
of non-nested gene teams sizes, for the human/chicken comparison, for the com-
plete set of clusters identified at any gap size. The gene team size distribution
peaks very quickly: over 80% of gene teams contain fewer than ten genes. The
sizes of non-nested gene teams, however, peak much more slowly: only about
10% of non-nested gene teams contain fewer than ten genes. It is not until the
size reaches 270 genes that the CDF reaches 0.8.

In summary, when comparing E. coli with B. subtilis with reasonable gap
sizes, the nestedness assumption does not exclude any clusters from the data. For
the eukaryotic datasets, these results also suggest that for smaller gap sizes few
clusters are missed when using a greedy search strategy. For larger gap values,
the nestedness assumption does appear to lead to some loss of signal, especially
in the human/chicken comparison: large clusters are identified only in fragments,
and the spatial clustering of many genes is not detected at all. For more diverged
genome pairs, as clusters become more disordered, this loss of signal may be
exacerbated. This remains to be investigated, as do the practical implications
of the nestedness assumption on the detection of duplicated segments through
genome self-comparison.

5 Discussion

We have characterized desirable properties of cluster definitions, and compared
a number of existing definitions with respect to these properties. The detailed
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catalog of cluster properties presented here will be useful for assessing whether
definitions satisfy the intuitive notions upon which they are implicitly based,
and whether these notions actually correspond to the types of structures present
in real-genomic data. Analyses of desirable cluster properties may also pave the
way for new, possibly more powerful cluster definitions.

Our analysis of cluster properties reveals that existing approaches to identi-
fying gene clusters differ both in terms of the characteristics of the clusters they
were explicitly designed to find, and in terms of the properties that emerge as un-
intended consequences of modeling choices. We show that the search procedure,
in addition to the cluster definition, often implicitly enforces additional types
of constraints. Such implicit constraints may be particularly problematic when
the goal is to characterize the properties of homologous regions. For example,
although the CloseUp algorithm was ostensibly designed to identify chromoso-
mal homology using “shared-gene density alone” [33], the greedy nature of the
search algorithm means that all clusters with a minimum gene density may not
actually be detected. If such an approach was used to evaluate the extent to
which order is conserved in homologous regions, incorrect inferences could be
made. For example, if clusters with highly scrambled gene order were not found,
one might erroneously conclude that no such clusters exist, rather than that the
clustering algorithm was simply not capable of finding them. Without a clear
understanding of which properties are constrained by the method, and which
properties are inherent in the data, it can be difficult to interpret such results.

Our results also show that, for the datasets considered here, a greedy search
strategy for max-gap clusters may actually improve statistical power, at least
for small gap sizes. A test of cluster significance will have increased power (i.e.,
a reduced number of false negatives) when the cluster definition is as narrow as
possible, while still capturing the properties exhibited by diverged homologous
regions. These properties, however, are generally not known, since there is little
data about evolutionary histories or processes. In some cases, however, the ap-
propriateness of a particular property can be evaluated even without full knowl-
edge of evolutionary histories. For example, if adding an additional constraint
to the cluster definition does not eliminate any of the clusters identified in the
data, then we argue that it is not only acceptable to include such a property in
the cluster definition, but desirable, in order to increase statistical power. Thus,
when comparing E. coli with B. subtilis with reasonable gap sizes, a nested clus-
ter definition appears to be a good choice: the nestedness assumption does not
exclude any clusters from the data, but significantly reduces the probability of
observing a cluster by chance, thereby strengthening the measurable significance
of detected clusters.

These results also suggest that in the three datasets we studied most clusters
remain quite ordered. Although an assumption of nestedness does implicitly
constrain gene order, more quantitative measures of order conservation may be
found that increase statistical power still further. How to best quantify the degree
to which order is conserved, however, remains an open question.
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Although there is often overlap among the properties of different definitions,
there is as yet no consensus on what criteria best reflect biologically important
features of gene clusters. This lack of consensus reflects the sparsity of data about
evolutionary histories and evolutionary processes, and also that the relevance of
particular properties depends to a large degree on the dataset being analyzed,
as well as the researcher’s goals. For example, physical distances between genes
and gene orientation may not be very helpful for identifying homology between
eukaryotic genomes, but may be important for identifying functional clusters
in bacteria. For identifying gene duplications, which are often followed by sig-
nificant differential gene loss of the homologs on each duplicated segment [43],
gene density may be of reduced importance than for identifying paralogous seg-
ments. In addition, when clusters are being identified as a pre-processing step
for reconstructing rearrangement histories, the exact boundaries and sizes of the
cluster may be quite important [44]. In other cases, a researcher may be trying
to test a global hypothesis (such as finding evidence for one or two rounds of
whole-genome duplication), and may not necessarily care about the significance
or boundaries of any specific cluster.

Even if it were known which properties reflect biologically relevant features,
designing a definition to satisfy those properties may not be straightforward
because, in many cases, properties are not independent. Properties may interact
in subtle ways—a definition that guarantees one desirable property will often
fail to satisfy another. For example, one of the nice properties of the max-gap
definition is that clusters are always disjoint. However, as shown in Section 3,
adding additional constraints on order or length results in clusters that are no
longer guaranteed to be disjoint. The subtle and sometimes undesirable interplay
of some of these properties makes it difficult to devise a definition that satisfies
them all. In fact, many of the most important properties are difficult to satisfy
with the same definition. Thus, it remains an open question to what extent a
single definition can capture all of these properties simultaneously.

Acknowledgment

D.D. was supported by NIH grant 1 K22 HG 02451-01 and a David and Lucille
Packard Foundation fellowship. R.H. was supported in part by a Barbara Lazarus
Women@IT Fellowship, funded in part by the Alfred P. Sloan Foundation. We
thank B. Vernot and N. Raghupathy for comments on the manuscript, and David
Sankoff for helpful discussion and for suggesting the title of the paper.

References

1. Murphy, W.J., Pevzner, P.A., O’Brien, S.J.: Mammalian phylogenomics comes of
age. Trends Genet 20 (2004) 631–9

2. O’Brien, S.J., Menotti-Raymond, M., Murphy, W.J., Nash, W.G., Wienberg, J.,
Stanyon, R., Copeland, N.G., Jenkins, N.A., Womack, J.E., Graves, J.A.M.: The
promise of comparative genomics in mammals. Science 286 (1999) 458–81



86 R. Hoberman and D. Durand

3. Sankoff, D.: Rearrangements and chromosomal evolution. Curr Opin Genet Dev
13 (2003) 583–7

4. Sankoff, D., Nadeau, J.H.: Chromosome rearrangements in evolution: From gene
order to genome sequence and back. PNAS 100 (2003) 11188–9

5. Simillion, C., Vandepoele, K., de Peer, Y.V.: Recent developments in computa-
tional approaches for uncovering genomic homology. Bioessays 26 (2004) 1225–35

6. Blanc, G., Hokamp, K., Wolfe, K.H.: A recent polyploidy superimposed on older
large-scale duplications in the Arabidopsis genome. Genome Res 13 (2003) 137–144

7. Chen, X., Su, Z., Dam, P., Palenik, B., Xu, Y., Jiang, T.: Operon prediction by
comparative genomics: an application to the Synechococcus sp. WH8102 genome.
Nucleic Acids Res 32 (2004) 2147–2157

8. Lawrence, J., Roth, J.R.: Selfish operons: horizontal transfer may drive the evolu-
tion of gene clusters. Genetics 143 (1996) 1843–60

9. Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D., Maltsev, N.: The use of
gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96 (1999)
2896–2901

10. Tamames, J.: Evolution of gene order conservation in prokaryotes. Genome Biol
6 (2001) 0020.1–11

11. Wolf, Y.I., Rogozin, I.B., Kondrashov, A.S., Koonin, E.V.: Genome alignment,
evolution of prokaryotic genome organization, and prediction of gene function using
genomic context. Genome Res 11 (2001) 356–72

12. Endo, T., Imanishi, T., Gojobori, T., Inoko, H.: Evolutionary significance of intra-
genome duplications on human chromosomes. Gene 205 (1997) 19–27

13. Smith, N.G.C., Knight, R., Hurst, L.D.: Vertebrate genome evolution: a slow shuffle
or a big bang. BioEssays 21 (1999) 697–703

14. Trachtulec, Z., Forejt, J.: Synteny of orthologous genes conserved in mammals,
snake, fly, nematode, and fission yeast. Mamm Genome 3 (2001) 227–231

15. Friedman, R., Hughes, A.L.: Gene duplication and the structure of eukaryotic
genomes. Genome Res 11 (2001) 373–81

16. Luc, N., Risler, J., Bergeron, A., Raffinot, M.: Gene teams: a new formalization of
gene clusters for comparative genomics. Comput Biol Chem 27 (2003) 59–67

17. McLysaght, A., Hokamp, K., Wolfe, K.H.: Extensive genomic duplication during
early chordate evolution. Nat Genet 31 (2002) 200–204

18. Cavalcanti, A.R.O., Ferreira, R., Gu, Z., Li, W.H.: Patterns of gene duplication in
Saccharomyces cerevisiae and Caenorhabditis elegans. J Mol Evol 56 (2003) 28–37

19. Durand, D., Sankoff, D.: Tests for gene clustering. Journal of Computational
Biology (2003) 453–482

20. Bergeron, A., Corteel, S., Raffinot, M.: The algorithmic of gene teams. In Gusfield,
D., Guigo, R., eds.: WABI. Volume 2452 of Lecture Notes in Computer Science.
(2002) 464–476

21. Hoberman, R., Sankoff, D., Durand, D.: The statistical significance of max-gap
clusters. In Lagergren, J., ed.: Proceedings of the RECOMB Satellite Workshop
on Comparative Genomics, Bertinoro, Lecture Notes in Bioinformatics, Springer
Verlag (2004)

22. Didier, G.: Common intervals of two sequences. In: WABI. Volume 2812., Lecture
Notes in Computer Science (2003) 17–24

23. Heber, S., Stoye, J.: Algorithms for finding gene clusters. In: WABI. Volume 2149
of Lecture Notes in Computer Science. (2001) 254–265

24. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica 26 (2000) 290–309



The Incompatible Desiderata of Gene Cluster Properties 87

25. Calabrese, P.P., Chakravarty, S., Vision, T.J.: Fast identification and statistical
evaluation of segmental homologies in comparative maps. ISMB (Supplement of
Bioinformatics) (2003) 74–80

26. Sankoff, D., Ferretti, V., Nadeau, J.H.: Conserved segment identification. Journal
of Computational Biology 4 (1997) 559–565

27. Pevzner, P., Tesler, G.: Genome rearrangements in mammalian evolution: lessons
from human and mouse genomes. Genome Res 13 (2003) 37–45

28. Haas, B.J., Delcher, A.L., Wortman, J.R., Salzberg, S.L.: DAGchainer: a tool
for mining segmental genome duplications and synteny. Bioinformatics 20 (2004)
3643–6

29. Vision, T.J., Brown, D.G., Tanksley, S.D.: The origins of genomic duplications in
Arabidopsis. Science 290 (2000) 2114–2117

30. Bansal, A.K.: An automated comparative analysis of 17 complete microbial
genomes. Bioinformatics 15 (1999) 900–908 http://www.cs.kent.edu/∼arvind/
orthos.html.

31. Cannon, S.B., Kozik, A., Chan, B., Michelmore, R., Young, N.D.: DiagHunter and
GenoPix2D: programs for genomic comparisons, large-scale homology discovery
and visualization. Genome Biol 4 (2003) R68

32. Hampson, S., McLysaght, A., Gaut, B., Baldi, P.: LineUp: statistical detection of
chromosomal homology with application to plant comparative genomics. Genome
Res 13 (2003) 999–1010

33. Hampson, S.E., Gaut, B.S., Baldi, P.: Statistical detection of chromosomal homol-
ogy using shared-gene density alone. Bioinformatics 21 (2005) 1339–48

34. Vandepoele, K., Saeys, Y., Simillion, C., Raes, J., Peer, Y.V.D.: The automatic
detection of homologous regions (ADHoRe) and its application to microcolinearity
between Arabidopsis and rice. Genome Res 12 (2002) 1792–801

35. Raes, J., Vandepoele, K., Simillion, C., Saeys, Y., de Peer, Y.V.: Investigating
ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 3
(2003) 117–29

36. Graur, D., Martin, W.: Reading the entrails of chickens: molecular timescales of
evolution and the illusion of precision. Trends Genet 20 (2004) 80–6

37. Nei, M., Kumar, S.: Molecular Evolution and Phylogenetics. Oxford University
Press (2000)

38. Zhang, L., Vision, T.J., Gaut, B.S.: Patterns of nucleotide substitution among
simultaneously duplicated gene pairs in Arabidopsis thaliana. Mol Biol Evol 19
(2002) 1464–73

39. Hokamp, K.: A Bioinformatics Approach to (Intra-)Genome Comparisons. PhD
thesis, University of Dublin, Trinity College (2001)

40. Bourque, G., Zdobnov, E., Bork, P., Pevzner, P., Telser, G.: Genome rearrange-
ments in human, mouse, rat and chicken. Genome Research (2004)

41. Simillion, C., Vandepoele, K., Montagu, M.V., Zabeau, M., de Peer, Y.V.: The
hidden duplication past of Arabidopsis thaliana. PNAS 99 (2002) 13627–32

42. O’Brien, K.P., Remm, M., Sonnhammer, E.L.L.: Inparanoid: a comprehensive
database of eukaryotic orthologs. Nucleic Acids Res 33 (2005) D476–80 Version
4.0, downloaded May 2005.

43. Lynch, M., Conery, J.S.: The evolutionary fate and consequences of duplicate
genes. Science 290 (2000) 1151–1155

44. Trinh, P., McLysaght, A., Sankoff, D.: Genomic features in the breakpoint regions
between syntenic blocks. Bioinformatics 20 Suppl 1 (2004) I318–I325



The String Barcoding Problem is NP-Hard

Marcello Dalpasso1, Giuseppe Lancia2, and Romeo Rizzi3

1 Dipartimento di Ingegneria dell’Informazione, University of Padova
dalpasso@dei.unipd.it

2 Dipartimento di Matematica ed Informatica, University of Udine
lancia@dimi.uniud.it

3 Dipartimento di Informatica e Telecomunicazioni, University of Trento
romeo.rizzi@unitn.it

Abstract. The String Barcoding (SBC) problem, introduced by Rash
and Gusfield (RECOMB, 2002), consists in finding a minimum set of
substrings that can be used to distinguish between all members of a set
of given strings. In a computational biology context, the given strings
represent a set of known viruses, while the substrings can be used as
probes for an hybridization experiment via microarray. Eventually, one
aims at the classification of new strings (unknown viruses) through the
result of the hybridization experiment. Rash and Gusfield utilized an
Integer Programming approach for the solution of SBC, but they left
the computational complexity of the problem as an open question. In
this paper we settle the question and prove that SBC is NP-hard.

1 Introduction

The following setting was introduced by Rash and Gusfield in [4]: Given a set
V of n strings v1, . . . , vn (representing the genomes of n known viruses), and
an extra string s (representing a virus in V , but not yet classified), we aim at
recognizing s as one of the known viruses through an hybridization experiment.
In the experiment, we will utilize a set P of k probes (DNA strings) and we will
be able to determine which ones are contained in s (as substrings) and which are
not. The result of the experiment is therefore a binary k-vector (called, in [4] a
barcode) which can be seen as the signature of s with respect to the given probes.
In order for the barcode to be able to discriminate between all the viruses, it
must be true that, for each pair of viruses vi, vj , with 1 ≤ i < j ≤ n, there exists
at least one p ∈ P which is a substring of either vi or vj but not of both. This
amounts to saying that the barcodes of all vi’s must be distinct binary k-vectors.
The cost of the hybridization experiment turns out to be proportional to k,
and therefore the goal of the optimization problem, known as Minimum String
Barcoding (SBC), is to find a feasible set P of smallest possible cardinality.
Rash and Gusfield proposed an Integer Programming approach for the solution
of SBC and also stated that a variant of the problem, in which the maximum
length of each probe p ∈ P is bounded by a constant, is NP-hard. On the other
hand, they reported that “the proof for the max-length variant breaks down
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when you try to apply it to the unconstrained case” and they listed as the first
item in the section on Future Directions: “The first item is to determine if the
unconstrained SBC problem is NP-complete or not”. In this paper we prove
that SBC is in fact NP-complete.

The remainder of the paper is organized as follows. In Section 2 we introduce
the Minimum Test Collection problem (MTC), a known NP-complete problem
(see, e.g., Garey and Johnson [2]). In particular, we describe a special version of
MTC which we show to be NP-complete as well, via a reduction from Set Cov-
ering. Later on, we use this special version as the starting problem to prove that
SBC is NP-complete. In Section 3 we address the computational complexity
of the problems. Subsection 3.1 introduces formally the string barcoding prob-
lems studied. In Subsection 3.2 we prove that the maximum-length version of
SBC is NP-complete (a fact already stated in [4], although without reporting
the proof, probably due to space limitations). Then, in subsection 3.3 we show
how to get rid of the constraint on the substring length and we prove our main
result, i.e., that SBC is NP-complete. The two complexity results of 3.2 and 3.3
are obtained by means of two similar reductions from MTC. The second time
the reduction is more elaborate and starts from instances of the special case of
MTC introduced in Section 2.

2 A Starting Problem: The Min Test Collection

In this section we introduce the Minimum Test Collection (MTC) problem, in
its general form and in a restricted version, which we prove to be NP-complete.
MTC and its restricted version will be used later on in the reduction to prove
that SBC is NP-complete.

The MTC problem, as defined in [2], is the following problem:

MTC INSTANCE:
D = {d1, . . . , dn}: a set of (ground) elements
T = {T1, . . . , Tm}: a set of subsets of D (representing tests that may
succeed or fail on the elements. A test T succeeds on d if d ∈ T and fails
on d otherwise).
MTC PROBLEM:
Find a minimum-size set T ′ ⊆ T such that for any pair of elements
d, d′ ∈ D there is at least one test T ∈ T ′ such that |{d, d′} ∩ T | = 1
(i.e., the test fails on one element and succeeds on the other). A set that
verifies this property is called a testing set of D; T ′ is a minimum testing
set of D.

In the decision form of MTC, a positive integer h is also given as part of
the input, and the problem requires to decide whether a testing set T ′ ⊆ T with
|T ′| ≤ h exists.

The MTC problem appears in many contexts, including one in which the
elements represent a set of n diseases, and the Ti are diagnostic tests, that can
verify the presence/absence of m symptoms. The goal is to minimize the number
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of symptoms whose presence/absence should be verified in order to correctly di-
agnose the disease. In [2], Garey and Johnson proved that MTC is NP-complete
by reducing 3-dimensional Matching (3DM), which is NP-complete [3], to it.

We now turn to a special type of MTC instances, which we call standard.
In this version of the problem, some particular tests must always be part of the
problem instance.

In order to define this particular instances, assume the elements in D are
ordered as d1, . . . , dn and let Dj = {dj, . . . , dn} for j = 1, . . . , n. A set of tests
T is called suffix-closed if Dj ∩ T ∈ T for each T ∈ T and j = 1, . . . , n. A
suffix-closed set of tests T is called standard if Di ∈ T and {di} ∈ T for each i =
1, . . . , n. An instance 〈D, T 〉 of MTC is standard when T is standard. In other
words, a standard instance of MTC consists of a finite set D = {d1, . . . , dn}
and a set T = {T1, . . . , Tn(m+2)} of tests which can be partitioned as T =
TD ∪ TI ∪ TA ∪ TE , where

TD = {T1, . . . , Tm}: a set of subsets of D;
TI = {Tm+1, . . . , Tm+n} = {{d} | d ∈ D};
TA = {Tm+n+1, . . . , Tm+2n} = {Dj | 1 ≤ j ≤ n};
TE = {Tm+2n+1, . . . , Tn(m+2)} = {T ∩ Dj | T ∈ TD, 2 ≤ j ≤ n};

We can now prove the following result:

Theorem 1. Minimum Test Collection (MTC) is NP-complete even when re-
stricted to standard instances.

Proof. We prove the theorem by a reduction from the Set Covering (SC) prob-
lem, which is defined ([1]) as follows:

SC INSTANCE:
A finite set S = {s1, . . . , sm} and a collection C = {C1, . . . , Cn} ⊆ 2S.
SC PROBLEM:
Find a minimum-size collection C′ ⊆ C such that every element in S
belongs to at least one subset in C′, i.e.

S =
⋃

C∈C′
C (1)

We say that any C′ satisfying Equation 1 covers S, and we call such a
set a set cover for S.

It is well known that SC is NP-hard. Furthermore, the version in which
{s} ∈ C for all s ∈ S is NP-hard as well (in fact, it is immediate to see that
adding all the singletons {s} to C in a SC leads to an SC instance with the
exact same optimal value).

So, let S = {s1, . . . , sm} and C = {C1, . . . , Cn} ⊆ 2S be an arbitrary instance
of SC, such that C contains the singletons {s} for all s ∈ S. We show how to
obtain a standard instance of MTC representing the given instance of SC.



The String Barcoding Problem is NP-Hard 91

First, let k = �log2 m�, K = 2k and R = {r1, . . . , rK}. Moreover, associate
to each element ri ∈ R a unique binary string of length k, and associate to each
si ∈ S the same string of its respective element ri ∈ R.

The set of elements D is defined as D = R ∪ S, with a particular order:
D = {r1, s1, r2, s2, . . . , rm, sm, rm+1, rm+2 . . . , rK} (i.e., D = {d1, . . . , dn} with
n = m+K). The set of tests T is constructed in the following way. First, for each
i = 1, . . . , k we call Ti the test containing all the elements of D whose associated
binary strings have the bit in position i set to 1. Then let T = C ∪ {Ti | i =
1, . . . , k} ∪ {{d} | d ∈ D} ∪ {Dj | 1 ≤ j ≤ n} ∪ {T ∩ Dj | T ∈ (C ∪ {Ti | i =
1, . . . , k}), 2 ≤ j ≤ n}.

Now we show the following two lemmas.

Lemma 1. If S has a set cover C′ ⊆ C of size at most h, then D has a testing
set T ′ ⊆ T of size at most h + k.

Proof. Let C′ ⊆ C be a set cover for S of size at most h. We claim that C′ ∪
{Ti | i = 1, . . . , k} is a testing set for D, which proves the lemma. Indeed, consider
two elements si (or ri) and sj (or rj). If i �= j then the binary strings associated
to i and j differ in some position p, and hence Tp distinguishes between them.
Otherwise, if i = j and the two elements still differ, then we are talking about
si and ri; since si is contained in at least one set in C′ and, moreover, no set in
C′ contains ri, then there is some set in C′ which distinguishes between si and
ri. ��

Lemma 2. If D has a testing set T ′ ⊆ T of size at most h, then S has a set
cover C′ ⊆ C of size at most h.

Proof. Let T ′ ⊆ T be a testing set of D of size at most h. We propose a
polynomial time algorithm to produce a set C′ ⊆ C with |C′| ≤ |T ′| such that
C′ ∪ {Ti | i = 1, . . . , k} is also a testing set of D. At the end, we argue that, in
this case, C′ must be a set cover of S.

Let X = T ′. Clearly, X ∪ {Ti | i = 1, . . . , k} distinguishes all the elements
in D, and this invariant will be maintained throughout the algorithm. If X ⊆ C
then we just let C′ = X . Otherwise, let T ∈ T ′ \ C. Notice that the only pairs
of elements which are not distinguished by T ′ ∪ {Ti | i = 1, . . . , k} \ {T } are
of the form {si, ri}; hence, T distinguishes a pair {si, ri}. We now show that
T can be replaced by a set of C who distinguishes the same couple of elements.
Indeed, if T is a singleton {ri} for some ri ∈ R, then it can be replaced with the
respective singleton {si} such that si ∈ S (which is in C by hypothesis). Else, if
T is a test Dj with j = 2i and j ≤ 2K, the ordering we have imposed among
the elements of D implies that it distinguishes only the pair sj/2 and rj/2, so
again it can be replaced with the singleton {sj/2}; if T is a test Ti∩Dj , a similar
reasoning holds. Finally, if T is a test C ∩ Dj for some C ∈ C, then, clearly, it
can be replaced with C. Hence, by substituting every test T ∈ X \ C by tests in
C as shown, we obtain that X ⊆ C, and we let C′ = X .

We now argue simply that, since C′ ∪ {Ti | i = 1, . . . , k} is a testing set
of V , then C′ is a set cover of S. Indeed, each pair of type {rj , sj} cannot
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be distinguished by a set Ti, and, therefore, it must be distinguished by a test
T̄ ∈ C′. Moreover, since rj /∈ T for any T ∈ C′, it must be that sj ∈ T̄ . Therefore,
each sj is covered, and C′ is a set cover of S. ��

The two previous lemmas together imply that we could solve SC in poly-
nomial time if and only if we could solve the corresponding MTC instance in
polynomial time, and hence Theorem 1 is proved. ��

3 NP-Hardness of String Barcoding

3.1 The String Barcoding Problems

The following is a formal definition of the String Barcoding problem (SBC):

SBC INSTANCE:
An alphabet Σ (e.g., Σ = {A, C, G, T}) and a set V = {v1, . . . , vn} of
strings over Σ (representing virus genomes).
SBC PROBLEM:
Find a minimum-size set P of strings such that for any pair of strings
v, v′ ∈ V there is at least one string p ∈ P such that p is a substring of
v or v′, but not both. A set that verifies this property is called a testing
set of V ; P is a minimum testing set of V .

Rash and Gusfield state in [4] that it is unknown whether the basic String
Barcoding problem is NP-hard or not and they also state, without reporting the
proof, that a variant of SBC called Max-length String Barcoding (MLSBC) is
NP-hard when the underlying alphabet contains at least three elements; in this
variant a constraint on the maximum length of the substrings in P is specified
in input. More formally, MLSBC is the following problem:

MLSBC INSTANCE:
An alphabet Σ, a set V = {v1, . . . , vn} of strings over Σ and a constant
k.
MLSBC PROBLEM:
Find a testing set P of V such that the length of each string p ∈ P is
less than or equal to k, and P has smallest possible cardinality among
such testing sets.

3.2 An NP-Completeness Proof for MLSBC

In this section we prove that MLSBC is NP-hard, by considering the problem
in its decision form and proving that it is NP-complete. The proof consists in
reducing the Minimum Test Collection (MTC) problem to Max-length String
Barcoding.

Theorem 2. Max-length String Barcoding (MLSBC) is NP-complete.
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We reduce MTC to MLSBC in the following way.
Let D = {d1, . . . , dn} and T = {T1, . . . , Tm} be an instance of MTC. This

instance can be viewed as a matrix M with n columns and m rows, in which
cell Mij = 1 if dj ∈ Ti (representing the fact that test Ti succeeds on element
dj), otherwise Mij = 0. Moreover, for Ω a set of strings, we define ©ω∈Ωω
as the string obtained as the concatenation of all the strings in Ω lined up in
lexicographic order (as a matter of fact, for the purpose of our reduction to work,
the strings in Ω could be concatenated in any order, but we prefer to refer to a
specific order so that the instance generated through the proposed reduction is
uniquely defined).

An instance of MLSBC is obtained in the following way. First, let k =
�log2 m�. Then, let Σ = {A, B}, Σ+ = {A, B, X} (the dummy symbol X will
be used as a separator, to divide the really interesting substrings, made only of
As and Bs). We denote by Σl the set of all the strings of length l in alphabet Σ,
for 1 ≤ l ≤ k. Finally, uniquely encode each different element T ∈ T by a string
fT ∈ Σk (called the signature of T ) and let F = {fT | T ∈ T }; certainly this is
possible since |Σk| = 2k ≥ m = |T |. Now, the instance of MLSBC is completed
by constructing the set of strings V = {vd | d ∈ D} such that each string vd ∈ V
contains all the strings in Σk−1 plus the signatures f ∈ F of those tests T ∈ T
that succeed on d (that is, such that d ∈ T ). More formally, the codification of
a disease d is the string vd = Xk ©σ∈Σk−1 (σXk) ©T�d (fT Xk).

Note that the MLSBC instance obtained consists of n strings v1, . . . , vn,
and the size of each such string vi is bounded by (2k−1 + m)(2k), which is a
polynomial in m and n since k = �log2 m�. Therefore now it only remains to
show that we can retrieve a feasible solution of one problem from a feasible
solution to the other. In particular, we show that V has a testing set of size at
most h if and only if D has a testing set of size at most h.

Lemma 3. If D has a testing set T ′ ⊆ T of size at most h, then V has a testing
set of size at most h.

Proof. It is easy to see that, by construction, given a testing set T ′ ⊆ T for D,
the set P = {fT ∈ Σk | fT is the signature of T ∈ T ′} is a testing set for V ,
and clearly |P | ≤ |T ′|. Indeed, note that fT is a substring of vd if and only if
d ∈ T . ��

Lemma 4. If V has a testing set of size at most h, then D has a testing set
T ′ ⊆ T of size at most h.

Proof. We want to show that, given a testing set P for V , there exists a testing
set T ′ ⊆ T for D with |T ′| ≤ |P |. In order to do this, we can assume that P is
a minimal testing set, that is, P \ {p} is not a testing set for all p ∈ P . We call
a testing set canonical if all of its strings are strings in F . We claim that the
minimality of P implies that P is canonical. Indeed, if P is minimal, then each
p ∈ P must distinguish some viruses. Therefore, no string in P is of the form Σe

with e < k since every such string is a substring of each v ∈ V . More generally,
since the string Xk ©σ∈Σk−1 (σXk) is contained in each v ∈ V , then P contains
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none of the strings Xd with d ≤ k, nor any string obtained concatenating some
string in Σe with some string Xd. (We also remember that |p| ≤ k for each
p ∈ P .) This implies that every string in P belongs to Σ∗. Therefore, |p| = k
and so p ∈ F . Hence P is canonical. Now consider the set T ′ = {T | fT ∈ P}:
since P is canonical, T ′ is well defined and T ′ ⊆ T ; moreover, |T ′| ≤ |P | and it
is easy to see that T ′ is a testing set. ��

Lemma 3 and Lemma 4 together conclude the reduction of MTC to MLSBC
and, hence, the proof of Theorem 2.

3.3 The NP-Completeness Proof for SBC

In this section we turn our attention to SBC and show that it too is NP-hard.
As in the case of MLSBC, we consider SBC in its decision form and prove that
it is NP-complete. We show that SBC is NP-complete by reducing the restricted
form of MTC to it.

Theorem 3. String Barcoding (SBC) is NP-complete.

The proof of Theorem 3 consists in a reduction of MTC in its restricted
form to SBC; the reduction is the following.

Let D = {d1, . . . , dn} and T = {T1, . . . , Tn(m+2)} = TD ∪ TI ∪ TA ∪ TE

be an instance of MTC of the kind described before, with TD = {T1, . . . , Tm},
TI = {Tm+1, . . . , Tm+n}, TA = {Tm+n+1, . . . , Tm+2n} and TE = {Tm+2n+1,
. . . , Tn(m+2)}. This instance can be viewed as a matrix M with n columns and
n(m + 2) rows, in which cell Mij = 1 if dj ∈ Ti (representing the fact that test
Ti succeeds on element dj), otherwise Mij = 0.

An instance of SBC is obtained, similarly to the NP-completeness proof of
MLSBC in Section 3.2, in the following way. First, let k = �log2(n(m + 2))�.
Then, let Σ = {A, B}, Σ+ = {A, B, X}, and let Σl be the set of all the strings
of length l in the alphabet Σ, for 1 ≤ l ≤ k. The operator © is defined exactly
in Section 3.2. Finally, uniquely encode each element T ∈ T by a string fT ∈ Σk

(called the signature of T ) and let F = {fT | T ∈ T }. Now, the instance of
SBC is completed by constructing the set of strings V = {vd | d ∈ D} such that
each string vd ∈ V contains all the strings in Σk−1 plus the signatures f ∈ F of
those tests T ∈ T that succeed on d (that is, such that d ∈ T ). More formally,
the codification of a disease d is the string vd = Xk+j ©σ∈Σk−1 (σXk+j) ©T�d

(fT Xk+j). Notice that the role of X is to separate the substrings, and that a
different number of X characters is used in each string v in order to uniquely
identify them.

The size of the constructed strings, and hence the shown transformation
from the MTC instance to the SBC one, is polynomial. Therefore now it only
remains to show that V has a testing set of size at most h if and only if D has
a testing set of size at most h.

Lemma 5. If D has a testing set T ′ ⊆ T of size at most h, then V has a testing
set of size at most h.
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Proof. It is easy to see that, by construction, given a testing set T ′ ⊆ T for D,
the set P = {fT ∈ Σk | fT is the signature of T ∈ T ′} is a testing set for V ,
and clearly |P | ≤ |T ′|. Indeed, note that fT is a substring of vd if and only if
d ∈ T . ��

Lemma 6. If V has a testing set of size at most h, then D has a testing set
T ′ ⊆ T of size at most h.

Proof. We want to show that, given a testing set P for V , there exists a testing
set T ′ ⊆ T for D with |T ′| ≤ |P |. In order to do this, we can assume that P
is a minimal testing set. Note that, by the assumption of minimality, the fact
that the string Xk+j ©σ∈Σk−1 (σXk+j) is contained in each vj ∈ V implies that
neither any of the strings of Σd with 1 ≤ d ≤ k, nor any of the strings Xd with
1 ≤ d ≤ k + 1, nor any string obtained concatenating some string in Σd with
some string Xd can be in P . More formally, we claim that P cannot contain any
string of the form Xd1{A, B}eXd2 with e < k and d1 + e + d2 ≤ k + 1. Indeed,
since P is minimal, then each p ∈ P distinguishes some disease. Consequently
the only substrings that can be contained in P have the following structure or,
in turn, contain a substring with this structure:

α = a Xd b

where a ∈ Σe1 , b ∈ Σe2 and one of the following combinations of the values of
d, e1 and e2 holds:

1. k + 1 ≤ d ≤ k + n and e1, e2 > 0; these substrings can be translated to tests
from TI : if d = k + j, test Tm+j is taken.

2. k + 1 < d ≤ k + n and ((e1 = 0 and e2 = k) or (e2 = 0 and e1 = k));
(a) if substring fi ∈ F (with 1 ≤ i ≤ m or i = m + 2n) is contained in α,

these substrings can be translated to tests from TE : if d = k + j, test
Tm+2n+(n−1)(i−1)+j−1 is taken;

(b) if substring fi ∈ F (with m + 1 ≤ i ≤ m + n) is contained in α, these
substrings can be translated to tests from TI : test Ti is taken;

(c) if substring fi ∈ F (with m + n + 1 < i < m + 2n) is contained in α,
these substrings can be translated to tests from TA: if d = k + j, test
Tm+n+j is taken;

(d) if substring fi ∈ F (with m + 2n + 1 ≤ i ≤ n(m + 2)) is contained in
α, these substrings can be translated to tests from TE : if d = k + j, test
T� i−(m+2n+1)

n−1 	(n−1)+m+2n+j−1
is taken.

3. k +1 < d ≤ k +n and ((e1 = 0 and 0 ≤ e2 < k) or (e2 = 0 and 0 ≤ e1 < k));
these substrings can be translated to tests from TA: if d = k+j, test Tm+n+j

is taken.
4. 0 < d ≤ k + 1 and ((e1 = 0 and e2 = k) or (e2 = 0 and e1 = k)); these

substrings can be translated as follows: if substring fi ∈ F is contained in
α, test Ti is taken.

5. d = 0 and (e1 + e2 = k); as in the previous case, these substrings can be
translated as follows: if substring fi ∈ F is contained in α, test Ti is taken.
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Note that if more than one substring with this structure is contained in the
considered string, the substring which is taken into account is the first one based
on the ordering which is shown above.

Hence, from the strings which are contained in P we can easily obtain the
elements T ∈ T which they codify, that are exactly the elements which com-
pose the minimum testing set T ′ for D. Now consider the set T ′ = {T ∈
T | T is taken as just seen}: T ′ is well defined; moreover, |T ′| ≤ |P |. ��

Lemma 5 and Lemma 6 together conclude the reduction of MTC in its
restricted form to SBC and, hence, the proof of Theorem 3.
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Abstract. In the half-century since the C-value paradox (the apparent lack of 
correlation between organismal genome size and morphological complexity) 
was described, there have been no explicit statistical comparisons between 
measures of genome size and organism complexity.  It is reported here that 
there are significant positive correlations between measures of genome size and 
complexity with measures of non-hierarchical morphological complexity in 139 
prokaryotic and eukaryotic organisms with sequenced genomes. These 
correlations are robust to correction for phylogenetic history by independent 
contrasts, and are largely unaffected by the choice of data set for phylogenetic 
reconstruction. These results suggest that the C-value paradox may be more 
apparent than real, at least for organisms with relatively small genomes like 
those considered here. A complete resolution of the C-value paradox will 
require the consideration and inclusion of organisms with large genomes into 
analyses like those presented here. 

1   Introduction 

In the years following the discovery that DNA was the hereditary material [1], and 
even before the structure of DNA was fully understood [2], investigators measured 
the amount of haploid DNA (or C-value) in the cells of various organisms, hoping 
that this quantity might provide insights into the nature of genes [3].  They found no 
consistent relationship between the amount of DNA in the cells of an organism and 
the perceived complexity of that organism, and this lack of correspondence became 
known as the C-value paradox [4]. 

The C-value paradox has become one of the enduring mysteries of genetics, and 
generations of researchers have repeatedly referred to the lack of correspondence 
between genome size and organismal complexity [3, 5-9].  In spite of all of the 
attention devoted to the C-value paradox over more than five decades, there has yet to 
be an explicit statistical correlation analysis between measures of genome size and 
measures of organismal morphological complexity.  Organismal complexity has been 
difficult to examine rigorously because of the inherent difficulties in measuring the 
complexity of organisms.  Rather than trying to measure morphological complexity, 
most researchers studying the C-value paradox referred explicitly or implicitly to a 
complexity scale with bacteria at the bottom; protists, fungi, plants, and invertebrates 
in the middle; and vertebrates (particularly humans) at the top (Figure 1).  This scale, 
called the Great Chain of Being, can be traced back to Aristotle and exerts a pervasive 
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influence over popular and scientific perceptions of complexity [10].  This scale is not 
quantitative and incorporates untested assumptions about the relative complexity and 
monophyly of taxonomic groups.  

Instead, researchers have focused on studying the statistically significant 
relationships between genome size and a variety of other quantitative traits such as 
cell volume, nuclear volume, length of cell cycle, development time, and ability to 
regenerate after injury [5, 11-15], which had long been included as part of the C-value 
paradox [3, 4], but which recently have collectively been redefined as a distinct 
phenomenon known as the C-value enigma [6].  There have been two general 
categories of hypotheses concerning the cause of the C-value enigma and of genome 
size variation [5, 6].  Explanations in the first category suggest that the bulk of the 
DNA has an adaptive significance independent of its protein-coding function. The 
amount of DNA may affect features such as nuclear size and structure or rates of cell 
division and development, suggesting that changes in genome size may be adaptive 
[6, 12, 13]. The second category of explanation suggests that the accumulation of 
DNA is largely nonadaptive, and instead represents the proliferation of autonomously 
replicating elements that continue to accumulate until the cost to the organism 
becomes significant [16, 17].  Gregory [6, 14, 15] has recently summarized the 
available data and argues that variation in genome size (and by implication variation 
in amounts of genomic heterochromatin) is predominantly due to direct selection on 
the amount of bulk DNA via its causal effects on cell volume and other cellular and 
organismal parameters. 

The work described in this paper is explicitly not an examination of the C-value 
enigma, which is relatively well studied.  This study attempts to address a very different 
question, the C-value paradox sensu stricto or the relationship between genome size and 
organismal morphological complexity, which is virtually unstudied.  There are several 
developments that have increased the tractability of this type of investigation.  One of 
the most important of these is the availability of many organisms with sequenced 
genomes, providing us with reliable estimates of both genome size and number of open 
reading frames (an estimate of gene number) [18].  A second advance has been the 
development of measures of non-hierarchical morphological complexity [19].  The 
number of cell types produced by an organism is among the most commonly used 
indices of non-hierarchical morphological complexity, and there are cell type counts 
available for a wide variety of organisms [20-24].  A final advance has been the 
development of comparative techniques such as phylogenetically independent contrast 
analysis [25-27].  Phylogenetically independent contrasts allows the study of 
correlations among traits between different species of organisms, even though the 
organisms vary in their degree of relatedness and are therefore not independently and 
identically distributed.  It does this by using an explicit phylogeny to create a series of 
contrasts between pairs of sister taxa which, by definition, are the same age, so the time 
elapsed and the accumulated phylogenetic distance between the sister taxa is factored 
out of the analysis. The resulting contrasts are independently and identically distributed, 
and therefore suitable for correlation analysis.  The novel approach presented here 
builds on these developments, using measures of genome size and complexity from 
sequenced genomes, numbers of cell types and numbers of subcellular parts as measures 
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of morphological complexity, and phylogenetically independent contrast analysis to 
provide the first explicitly statistical analysis of the C-value paradox.  The results of 
independent contrast analysis suggest that the C-value and measures of morphological 
complexity are significantly positively correlated.  
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Fig. 1. Representations of the relative complexity of organisms. Above:  Pictorial 
representation of the Great Chain of Being as depicted in Valades [28] (after Fletcher [29]).  
Below: the correspondence between number of open reading frames (an estimate of gene 
number) and the number of cell types produced for the first 139 organisms with sequenced 
genomes 
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2   Materials and Methods 

While genome size has been the preferred metric for comparison with complexity, at 
least initially it was intended to be a proxy for gene number [3], which was difficult to 
estimate accurately until whole genome sequencing became possible.  Genome size 
and number of open reading frames (an estimate of gene number) for the first 139 
completely sequenced genomes (including 121 prokaryotes and 18 eukaryotes) were 
obtained from two genome databases [30, 31].  The number of cell types and for 
prokaryotes, the number of types of cell parts, produced by each organism was 
obtained from the literature (On-Line Supplementary Table 1).  Cell types were 
considered distinct if intermediate morphologies were rare or absent.  Counts of types 
of cell parts were determined from descriptions of prokaryote ultrastructure that were 
included in species descriptions. The number of cell types and the number of types of 
cell parts represent non-hierarchical indices of complexity—organisms with more cell 
types or cell parts are considered to be more complex than organisms with fewer cell 
types or cell parts [19].  To control for evolutionary relatedness that might confound 
correlations between these measures, I used independent contrast analysis with 
phylogenetic trees generated from the small subunit of ribosomal RNA [32], using 
sequences available for each taxon from NCBI [33].  Sequences were aligned in 
CLUSTALX [34] and phylogenetic trees were generated by Neighbor-Joining, 
Parsimony, and Maximum Likelihood methods as implemented in PAUP* [35] with 
Eukaryote 18s rRNA sequences used as the outgroup.   

In addition, a data set for 45 taxa (4 eukaryotes and 41 prokaryotes), compiled and 
aligned by Brown et al. [36], and consisting of amino acid sequences for 23 conserved 
genes was kindly provided by James R. Brown. Open reading frame counts for two of 
the species included in Brown et al. [36], Porphyromonas gingivialis and 
Actinobacillus actinomycetemosomonas were not available when these analyses were 
conducted, so these species were excluded in my analysis (leaving 43 taxa: 4 
eukaryotes and 39 prokaryotes).  The Brown et al. (2001) data set was analyzed using 
Neighbor-Joining and Parsimony techniques.  Jukes-Cantor branch lengths were 
applied to all trees, branch lengths of 0 were converted to 0.000001, and all branch 
lengths were transformed to the square root of the Jukes-Cantor distance to 
standardize them for analysis by contrasts [27].  

3   Results 

The evolutionary trees produced by the phylogenetic analyses are not shown because 
they largely replicate the results of Nelson et al. [37] and Brown et al. [36].   These 
analyses had to be repeated because independent contrast analysis requires that the 
species included in the phylogeny and the species included in the continuous 
character data sets must be completely congruent.  Independent contrast analyses 
using trees produced by different tree-building algorithms from the same data set 
produced highly similar correlation coefficients, while analyses using trees derived 
from different data sets had larger differences in correlation coefficients.  However, 
the significance of independent contrast correlations was generally robust to changes 
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in tree topology, suggesting that phylogenetic uncertainty due to tree differences is 
unimportant in interpreting these correlations [38].   

3.1   Small Subunit rRNA Phylogeny Independent Contrast Analysis 

First, the small subunit rRNA data set will be considered.  After independent contrast 
analysis, the correlation between number of cell types and genome size was 
significant or nearly significant depending on the tree used (Table 1), and the 
correlation between the number of cell types and the number of open reading frames 
was highly significant (Figure 1). As eukaryotes, with their larger genome size and 
greater number of cell types, might unduly influence these results, so the eukaryotes 
were pruned from the trees and the independent contrast analysis was repeated.  A 
significant correlation was detected between the number of cell types and genome 
size, as was the number of cell types and number of open reading frames. To answer 
the concern that prokaryote cell diversity might be better expressed in terms of 
numbers of cell parts (organelle-like structures: prokaryotes by definition do not have 
true organelles), rather than numbers of cell types, the number of types of cell parts 
for each prokaryote was also collected.  This yielded a significant correlation between 
the number of types of cell parts and genome size and between the number of types of 
cell parts and the number of open reading frames.   

Table 1. Independent contrast analyses for the small subunit rRNA phylogeny 

Indpendent Contrast N r p 
With Eukaryotes    

Genome size vs. Number of Cell Types 139 0.155-0.186 0.029-0.068 
ORFs vs. Number of Cell Types 
 

139 0.616-0.641 <0.0001 

Without Eukaryotes    
Genome size vs. Number of Cell Types 121 0.225-0.228 0.011-0.013 
ORFs vs. Number of Cell Types 121 0.192-0.197 0.030-0.034 
Genome size vs. Number of Cell Parts 121 0.278-0.283 0.002 
ORFs vs. Number of Cell Parts 121 0.276-0.277 0.002 

3.2   Conserved Gene Amino Acid Phylogeny Independent Contrast Analysis 

Substantially similar relationships were found using alternative phylogenetic trees 
derived from conserved protein sequences for 43 species [36], suggesting that these 
correlations are not an artifact of trees derived from small subunit rRNA sequences.  
The independent contrast analysis using the Brown et al. (2001) data set showed a 
significant positive correlation between number of cell types and genome size and 
between the number of cell types and the number of open reading frames (Table 2).  
Pruning eukaryotes from the trees and repeating the analysis yielded significant 
correlations between number of cell types and genome size and between the number 
of cell types and the number of open reading frames. Continuing to restrict the 
analysis to prokaryotes and considering the number of types of cell parts gave 
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significant or nearly significant correlations between this quantity and both genome 
size and the number of open reading frames size. 

Table 2. Independent contrast analyses for the conserved gene amino acid phylogeny 

Indpendent Contrast N r p 
With Eukaryotes    

Genome size vs. Number of Cell Types 43 0.785-0.800 <0.0001 
ORFs vs. Number of Cell Types 
 

43 0.899-0.908 <0.0001 

Without Eukaryotes    
Genome size vs. Number of Cell Types 39 0.438-0.462 0.004-0.005 
ORFs vs. Number of Cell Types 39 0.432-0.459 0.003-0.006 
Genome size vs. Number of Cell Parts 39 0.308-0.320 0.047-0.056 
ORFs vs. Number of Cell Parts 39 0.345-0.360 0.024-0.031 

4   Discussion 

For all of the data sets examined here, there are significant positive correlations 
between genome size or numbers of open reading frames and numbers of cell types 
and numbers of types of cell parts.  These results suggest that the greatest irony about 
the C-value paradox may very well be that there is no paradox at all and that genome 
complexity and morphological complexity actually do significantly positively 
correlate with one another, at least for the organisms with sequenced genomes in this 
data set. This is not the first time a correspondence between genome size and 
morphological complexity has been suggested [16, 39, 40], but this is the first time 
the correspondence is supported by an analysis of independent contrasts that reveals a 
statistically significant positive correlation.  This suggests that organismal 
morphological complexity may follow some of the same scaling laws that have 
already been observed in other combinatorial systems [41]. 

While these results differ from those of most previous studies of the C-value 
paradox, previous methods for measuring these quantities (such as haploid DNA 
content, chromosome number, or placement on the scale of the Great Chain of Being 
[10]) may have been inadequate to detect these correlations.  The development of 
whole genome sequencing and annotation [30, 31] and the creation of new metrics for 
measuring complexity [19] have permitted this finer-scale understanding of the 
relationship between morphological complexity and genomic complexity.  For those 
interested in the relationship between genotype and the generation of morphological 
complexity [42], the detected correlations between numbers of open reading frames 
and numbers of cell types or types of cell parts suggest that the number of genes 
present in an organism may have a greater role in permitting, generating, or 
maintaining morphological complexity than previously anticipated. 

A note of caution is warranted in interpreting these results because the selection of 
genomes to be sequenced has been influenced by genome size, because larger 
genomes are more costly to sequence.  As a result, the tendency has been to select, 
particularly among eukaryotes, morphologically complex organisms with the smallest 
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possible genome sizes for sequencing.  This could predispose data sets containing 
eukaryotes to reveal positive correlations between genome size and morphological 
complexity because of issues of taxon sampling.  However, the selection of 
prokaryotes for sequencing, because of their universally much smaller genome sizes, 
is largely free from this bias, so the analyses of the prokaryote-only data sets included 
here are probably revealing real positive correlations between measures of genome 
size and complexity and measures of morphological complexity. 

Complete resolution of the C-value paradox will require the consideration of 
eukaryotic organisms with large genomes and significant amounts of heterochromatin 
so that a determination can be made concerning whether the relationships reported 
here also hold at larger genome sizes, something that may not be possible until several 
organisms with large genomes have been sequenced.   

Acknowledgements 

The author thanks D. McShea and R. Fehon for the public discussion that inspired this 
paper, B. Nicklas for his inspirational lectures on genome size, R. Vilgalys for 
insights into microbial diversity and ultrastructure, J. Brown for the aligned amino 
acid data set, J. Shapiro and T. Carter for their encouragement, and J. Seiff and B. 
Marcus for their help and patience.  D. McShea, K. Doerner, D. Emlen, T. Evans, A. 
Harper, K. Hertweck, T. Hughes, T. Powell, B. Polen, and two anonymous reviewers 
provided helpful comments on the manuscript.  Support for this research is from the 
National Science Foundation and the Commonwealth of Kentucky through an 
EPSCoR award (EPS-0132295), from the National Institutes of Health and the 
National Center for Research Resources Grant P20 RR16481, from a scholarship to 
the Complex Systems Summer School at the Santa Fe Institute, and from a Junior 
Faculty Scholarship from Western Kentucky University. 

References 

1. Avery, O.T., C.M. MacLeod, and M. McCarty, Studies on the Chemical Nature of the 
Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation 
by a Deoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III. J. Exp. Med., 
1944. 79(1): p. 137-158. 

2. Watson, J.D. and F.H.C. Crick, A structure for Deoxyribose Nucleic Acid. Nature, 1953. 
171: p. 737-738. 

3. Mirsky, A.E. and H. Ris, The deoxyribonucleic acid content of animal cells and its 
evolutionary significance. J. gen. Physiol., 1951. 34: p. 451-462. 

4. Thomas, C.A., The genetic organization of chromosomes. Annu. Rev. Genet., 1971. 5: p. 
237-256. 

5. Cavalier-Smith, T., ed. The evolution of genome size. 1985, John Wiley: New York. 
6. Gregory, T.R., Coincidence, coevolution, or causation?  DNA content, cell size, and the C-

value enigma. Biol. Rev., 2001. 76: p. 65-101. 
7. Pagel, M. and R.A. Johnstone, Variation across species in the size of the nuclear genome 

supports the junk-DNA explanation for the C-value paradox. Proc. R. Soc. Lond., 1992. 
249: p. 119-124. 



J.M. Marcus 104

8. Goin, O.B., C.J. Goin, and K. Bachmann, DNA and amphibian life history. Copeia, 1968. 
1968: p. 532-540. 

9. Ohno, S., Evolution by gene duplication. 1970, New York: Springer-Verlag. 
10. Lovejoy, A.O., The Great Chain of Being. 1936, Cambridge, MA: Harvard University 

Press. 376. 
11. Cavalier-Smith, T., Nuclear volume control by nucleoskeletal DNA, selection for cell 

volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci., 
1978. 43: p. 247-278. 

12. Cavalier-Smith, T., r- and K-tactics in the evolution of protist developmental systems:  cell 
and genome size, phenotype diversifying selection, and cell cycle patterns. Biosystems, 
1980. 12: p. 43-59. 

13. Sessions, S.K. and A. Larson, Developmental correlates of genome size in plethodontid 
salamanders and their implications for genome evolution. Evolution, 1987. 41: p. 1239-
1251. 

14. Gregory, T.R., Genome size and developmental complexity. Genetica, 2002. 115: p. 131-
146. 

15. Gregory, T.R., Macroevolution, hierarchy theory, and the C-value enigma. Paleobiology, 
2004. 30(2): p. 179-202. 

16. Doolittle, W.F. and C. Sapienza, Selfish genes, the phenotype paradigm and genome 
evolution. Nature, 1980. 284: p. 601-603. 

17. Orgel, L.E. and F.H.C. Crick, Selfish DNA:  the ultimate parasite. Nature, 1980. 284: p. 
604-607. 

18. Nelson, K.E., Paulsen, I.T., Heidelberg, J.F., and Fraser, C.M., Status of genome projects 
for nonpathogenic bacteria and archaea. Nature Biotechnology, 2000. 18: p. 1049-1054. 

19. McShea, D.W., Functional complexity in organisms: Parts as proxies. Biol. Philos, 2000. 
15(5): p. 641-668. 

20. Sneath, P.H.A., Comparative biochemical genetics in bacterial taxonomy, in Taxonomic 
Biochemistry and Serology, C.A. Leone, Editor. 1964, Ronald Press: New York. p. 565-
583. 

21. Valentine, J.W., A.G. Collins, and C. Porter Meyer, Morphological complexity increase in 
metazoans. Paleobiology, 1994. 20(2): p. 131-142. 

22. Carroll, S.B., Chance and necessity: the evolution of morphological complexity and 
diversity. Nature, 2001. 409(6823): p. 1102-1109. 

23. Bell, G. and A.O. Mooers, Size and complexity among multicellular organisms. Biol. J. 
Linn. Soc., 1997. 60: p. 345-363. 

24. Bonner, J.T., The evolution of complexity by means of natural selection. 1988, Princeton, 
NJ: Princeton University Press. 260. 

25. Harvey, P.H. and M.D. Pagel, The comparative method in evolutionary biology. 1991, 
Oxford: Oxford University Press. 

26. Felsenstein, J., Phylogenies and the comparative method. Am. Nat., 1985. 125: p. 1-15. 
27. Garland, T., Jr., P.H. Harvey, and I.R. Ives, Procedures for the analysis of comparative 

data using phylogenetically independent contrasts. Syst. Biol., 1992. 41: p. 18-32. 
28. Valades, D., Rhetorica Christiana. 1579: Pervsiae, apud Petrumiacobum Petrutium. 10. 
29. Fletcher, A., Gender, Sex, and Subordination in England 1500-1800. 1995, New Haven: 

Yale University Press. 442. 
30. CBS Genome Atlas Database. 2003, Center for Biological Sequence Analysis, 

http://www.cbs.dtu.dk/services/GenomeAtlas/: Lyngby, Denmark. 
31. GOLD Genomes OnLine DataBase. 2003, Integrated Genomics, 

http://igweb.integratedgenomics.com/GOLD/: Chicago, IL. 



A Partial Solution to the C-Value Paradox 105 

32. Martins, E.P., COMPARE, version 4.4. Computer programs for the statistical analysis of 
comparative data. 2001, Department of Biology, Indiana University, Bloomington  IN. 

33. National Center for Biotechnology Information. 2003, National Library of Medicine, 
http://www.ncbi.nlm.nih.gov/: Washington, D.C. 

34. Jeanmougin, F., et al., Multiple sequence alignment with Clustal X. Trends Biochem. Sci., 
1998. 23: p. 403-405. 

35. Swofford, D.L., PAUP*, Phylogenetic analysis using parsimony (*and other methods). 
1998, Sinauer Associates: Sunderland, Massachusetts. 

36. Brown, J.R., et al., Universal trees based on large combined protein sequence data sets. 
Nat. Genet., 2001. 28: p. 281-285. 

37. Nelson, K.E., et al., Status of genome projects for nonpathogenic bacteria and archaea. 
Nature Biotechnology, 2000. 18(10): p. 1049-1054. 

38. Marcus, J.M. and A.R. McCune, Ontogeny and phylogeny in the northern swordtail clade 
of Xiphophorus. Syst. Biol., 1999. 48(3): p. 491-522. 

39. Rees, H. and R.N. Jones, The origin of the wide species variation in nuclear DNA content. 
Int. Rev. Cytol., 1972. 32: p. 53-92. 

40. Sparrow, A.H., H.J. Price, and A.G. Underbrink, A survey of DNA content per cell and per 
chromosome of prokaryotic and eukaryotic organisms:  some evolutionary considerations. 
Brookhaven Symp. Biol., 1972. 23: p. 451-494. 

41. Changizi, M.A., Universal Scaling Laws for Hierarchical Complexity in Languages, 
Organisms, Behaviors and other Combinatorial Systems. J. Theor. Biol., 2001. 211: p. 
277-295. 

42. Hedges, S.B., et al., A molecular timescale of eukaryote evolution and the rise of complex 
multicellular life. BMC Evol. Biol., 2004. 4: p. 2  doi:10.1186/1471-2148-4-2. 



Individual Gene Cluster Statistics in Noisy Maps

Narayanan Raghupathy1, and Dannie Durand2

1 Department of Biological Sciences, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

rnarayan@cmu.edu
2 Departments of Biological Sciences and Computer Science,

Carnegie Mellon University, Pittsburgh, PA 15213, USA
durand@cmu.edu

Abstract. Identification of homologous chromosomal regions is impor-
tant for understanding evolutionary processes that shape genome evolu-
tion, such as genome rearrangements and large scale duplication events.
If these chromosomal regions have diverged significantly, statistical tests
to determine whether observed similarities in gene content are due to his-
tory or chance are imperative. Currently available methods are typically
designed for genomic data and are appropriate for whole genome analy-
ses. Statistical methods for estimating significance when a single pair of
regions is under consideration are needed. We present a new statistical
method, based on generating functions, for estimating the significance
of orthologous gene clusters under the null hypothesis of random gene
order. Our statistics is suitable for noisy comparative maps, in which a
one-to-one homology mapping cannot be established. It is also designed
for testing the significance of an individual gene cluster in isolation, in
situations where whole genome data is not available. We implement our
statistics in Mathematica and demonstrate its utility by applying it to
the MHC homologous regions in human and fly.

1 Introduction

Identification of pairs of homologous chromosomal regions is an important step
in solving a broad range of evolutionary and functional problems that arise in
comparative mapping and genomics. Closely related homologous regions will be
characterized by conserved gene order and content, and may have substantial
similarity in non-coding regions as well. However, in more distantly related re-
gions, significant sequence similarity will typically only be observable in coding
regions. In this case, genes are frequently treated as markers and putative ho-
mologous regions are identified by searching for gene clusters, regions that share
similar gene content but where neither content nor order are preserved. Sta-
tistical tests to distinguish significant clusters from chance similarities in gene
organization become essential as gene content and order diverge.

Conserved regions in whole genome comparisons are the basis of compara-
tive map construction, studies of genome rearrangements [1–3] and gene order
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conservation [4–6], alternative approaches to phylogeny reconstruction [5, 7–11]
and operon prediction in prokaryotes [12,13]. Genome self-comparison is used
to test hypotheses of whole genome duplication [14,15]. Studies such as these
consider gene clusters in a genomic context, focusing on large scale evolutionary
processes and chromosomal organization.

In addition, many evolutionary and functional studies are based on studies of
a single linkage groups [16–28]. Some studies examine the evolutionary history of
a particular conserved region and the selective forces that hold it together. Others
seek to exploit local similarities in gene organization for functional inference, gene
annotation or to disambiguate orthology identification. For organisms whose
lifestyle (e.g., lamprey) or longevity (e.g., fig) precludes construction of a genetic
map, further research depends on identification of a homologous region in a
species that is more suited to genetic manipulation or metabolic studies.

Analyses of such individual clusters often cannot take broader genomic con-
text into consideration. For example, many researchers in fields such as ecology
and organismal, behavioral and evolutionary biology work on species which have
not been sequenced and are unlikely to be sequenced in the foreseeable future.
In such cases, the amount of information about a region of interest, is limited by
the laboratory’s sequencing budget and available sequences in public data bases.

Our goal is to develop methods for estimating the statistical significance of
individual gene clusters that can be carried out with knowledge of a local region
plus aggregate properties such as an estimate of total gene number.

1.1 Related Work

While statistical models for testing cluster significance are beginning to appear
in the literature [21, 29–33], none are currently suitable for testing the signifi-
cance of individual clusters. The lack of genomic context imposes a number of
constraints on the statistical approach. Monte Carlo methods typically involve
randomization of the entire genome, which is possible only with a complete ge-
nomic data set. When this information is not available, analytical tests that are
parameterized by aggregate properties (e.g., the size of the genome, the size and
number of gene families, etc.) are required.

The statistical tests for individual clusters must be based on an appropriate
cluster definition. The intuitive notion that gene clusters share similar but not
conserved gene content has been translated into a number of different formal
models for finding and testing clusters [6, 29, 33–45], yet most of these are not
suitable for individual clusters. Cluster statistics depend on the size of the search
space. A number of statistical tests have been developed for a reference region
model [31,46,21,33,47], in which an investigator is interested in a particular ge-
nomic region and searches the entire genome for additional regions containing
the same genes. If the total number of genes in the genome is n and we are
interested in m reference genes (m << n), then there are n − m + 1 regions to
be considered. Thus in the reference region scenario O(n) pairs of regions must
be compared. However, when the investigator selects one or more pairs of ho-
mologous anchor genes and searches their genomic neighborhoods for additional
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homologs, the search space is O(1). For such studies, the O(n) reference region
approach will underestimate the significance of the cluster.

Furthermore, the cluster definition must not require whole genome context
to make sense. Many studies are based on the max-gap cluster, a maximal set
of homologous pairs where the distance between adjacent homologs on the same
chromosome is no greater than a pre-specified parameter, g. The nature of the
max-gap definition creates a “look-ahead” problem [36,46,45], such that maximal
max-gap clusters cannot be found using local, greedy heuristics. Although a local
search may suggest that a particular region does not contain a max-gap cluster,
a whole genome search is required to verify that a cluster meeting the max-gap
criterion does not exist. Thus, while statistical tests for max-gap clusters based
on the reference region model have been developed [46], these are not appropriate
for individual clusters found by local search.

Finally, most current statistical tests do not take gene families into account,
yet the significance of a cluster decreases as gene family size grows, because a
given gene in one genome can be homologous to more than one gene in the other.
As the number of possible matches increases, so do chance occurrences of gene
clusters. As a result, tests that do not take gene family size into account risk
overestimation of cluster significance.

1.2 Results
We propose a statistical test for individual clusters, under the null hypothesis
of random gene order. These may be used without complete genomic context,
are suitable for individual clusters found by local search, incorporate gene family
size and are computationally tractable. In previous work [31], we proposed a test
for individual clusters based on a window sampling model. Given two genomes
with gene families, our measure of significance was the probability of observing
a conserved set of linked genes in close proximity on both genomes. However,
the treatment presented was mainly of theoretical interest since it did not lend
itself to a computationally tractable implementation.

In the current paper, we recast this model in terms of generating functions,
allowing us to obtain a general expression for our test statistic under the as-
sumption of arbitrary gene family sizes. This statistic requires only the size of
the conserved region, number of homologous genes in the linkage group and esti-
mates of the distribution of gene family sizes and of the total number of genes in
the genome. No information about the spatial organization of the genome out-
side the conserved region is needed. Under the additional assumption of fixed
gene family sizes, we use the generating function model to obtain closed form
expressions approximating cluster probabilities that can be calculated efficiently
using Mathematica.

We describe our model and give a formal statement of the problem in Sec-
tion 2. In Section 3, we derive the probability of observing an individual cluster
under the null hypothesis of random gene order.

In Section 4, we demonstrate how our model may be applied, using the heavily
studied conserved homologous regions associated with Major Histocompatibility
Complex (MHC) in human and fly.
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2 Model

We develop tests for individual clusters based on the probability of observing
a cluster in a genome with uniform random gene order (a “random genome”).
A genome, Gi = (1, . . . , ni) is modeled as an ordered set of ni genes, ignoring
chromosome break and physical distances between genes. We assume that genes
do not overlap.

2.1 The 1-1 Model

We begin with a simple model of two genomes, G1 and G2, with identical gene
content and a one-to-one mapping between genes in G1 and genes in G2. That
is, every gene in G1 has exactly one homolog in G2 and vice versa. We define
an orthologous cluster as a pair of windows, W1 and W2, of length r1 and r2

selected from genomes G1 and G2, respectively, that share m homologous gene
pairs. Figure 1 shows a cluster of three genes in a window of size five.

· · · • • • ( v w • • u ) • • • • • • • · · ·
· · · • • • • • • ( u • w v •) • • • • · · ·

Fig. 1. A cluster with r = 5, m = 3 in the 1-1 model. Genes without homologs in this

region shown as dots.

In this simple model, the probability that a pair of windows, of length r1 and
r2, have exactly m genes in common is simply the probability that m of the r1

genes in W1 also appear in W2 and can be calculated using a hypergeometric
distribution:

p1−1(m) =

(
r1
m

)(
n2−r1
r2−m

)
(
n2
r2

)
The probability that the windows share at least m genes is then

∑r
i=m p1−1(i).

The 1-1 model requires a perfect, unambiguous homology mapping between G1

and G2. This may be possible after a recent speciation or polyploidization event.
In general, however, because of variations in mutation rates, convergent evolu-
tion, non-homologous gene displacement and multi-domain proteins generated
by exon shuffling, it is not possible to identify a unique match.

In this case, a many-to-many model is required. Genes are partitioned into
families, such that any gene in a given family in G1 can match any gene in the
same family in G2. The probability of finding a cluster by chance increases with
family size. Consider, for example, the simple scenario where just one of the genes
in W1 matches f genes in G2. The probability of finding m matches to the genes
in a fixed size in G2 increases since there are f possible matches for this one gene.
However, it is surprisingly difficult to obtain a straightforward closed formula
expressing this probability, even for this simple scenario. Therefore, accurate
statistics require a model of gene family size. However, this raises the challenge
that once gene families are incorporated in the model, it is no longer easy to
determine the expected number of matches in a window of size r.
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2.2 General Gene Family Model

The problem of identifying true homologs has been much debated and numerous
solutions have been proposed [33, 43, 48–50]. The first step is typically sequence
comparison. A variety of approaches are applied to rule out false positives or
negatives due to weak sequence similarity and/or matches based on homologous
domains in otherwise unrelated sequences. These include bi-directional best hits,
imposing a minimum alignment length requirement and phylogeny reconstruc-
tion. Despite these efforts, homology frequently remains unresolved. Further-
more, gene duplications that occur after the speciation separating G1 and G2,
result in situations where a gene in one genome has two or more legitimate
orthologs in the other.

We therefore extend our model to include gene families. A gene family is a
set of homologous genes; that is, genes that share a common ancestor, through
either duplication (paralogs) or speciation (orthologs). Gene family membership
in our model does not depend on inherent functional or structural properties of
the family but rather on what type of information the user brings to bear on
identification of homology relationships. We define a gene family to be the set
of indistinguishable homologous genes; i.e., homologous genes, where subfamily
classification cannot be further disambiguated.

This is illustrated by the tyrosine kinases, a large multi-domain family of eu-
karyotic signaling proteins with 90 members in human [51]. While sequence simi-
larity in the kinase domain shows that all tyrosine kinases are related, the domain
composition of these sequences varies greatly, so that domain architecture can be
used to disambiguate orthology. For instance, the Insulin Receptor (IR), in addi-
tion to the kinase domain, has two Furin-like domains, a Leucine-rich domain and
two fibronectin domains, a domain architecture shared only with two other human
genes: the Insulin Growth Factor 1 Receptor and the Insulin-Receptor Related Re-
ceptor. Thus, while an analysis based on sequence comparison alone might map
mouse IR to almost 100 kinases in human, an analysis based on domain architec-
ture would associate mouse IR with only three human homologs.

We will assume that the set of genes in genomes G1 and G2 can be partitioned
into non-intersecting gene families. Let fij ⊂ Gi denote the members of the jth
gene family in genome i. Then, the jth gene family, fj = f1j ∪f2j , is a set of genes
such that each gene in fj is homologous to all other genes in fj and only those
genes. There are φij = |fij | genes in the jth family in genome Gi. Let F = {fj}
be the set of all gene families in both genomes. In the gene family model, we define
an orthologous gene cluster to be a pair of windows of length r1 and r2, drawn from
G1 and G2, respectively, that have m gene families in common.

3 Cluster Statistics

We develop a test for individual clusters based on the probability of observing a
cluster in two genomes with uniform random gene order (a “random genome”).
In calculating cluster probabilities for the general case, we will need to count
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the number of ways that a window of a particular size can be filled with a given
set of gene families in several contexts. We therefore derive a general solution
to this problem using generating functions, a powerful combinatorial approach
which can be used to determine a sequence of interest from the coefficients of a
power series(see, for example, [52]). Here the sequence of interest is the number
of ways filling the window. It is this formalism that allows us to compute cluster
probabilities efficiently.

3.1 Window Packings

Define T to be a set of λ gene families of arbitrary size φ1 . . . φλ. Given the sample
space of all sets of w genes sampled from a genome of size n, we wish to enumerate
those that contain at least one gene from each family in T . Since we do not take
into account the order of genes in a window, this enumeration is equivalent to
finding all window packings. The generating function formulation allows us to
determine the number of such window packings, denoted by N (w, λ, T ).

We represent contribution of the jth family in T by the generating function

αj(t) =
(

φj

1

)
t +

(
φj

2

)
t2 + ... +

(
φj

φj

)
tφj . (1)

The coefficient of ti in αj(t), denoted by [ti]αj(t), represents the number of ways
of choosing i genes from jth family. The contributions of all λ families to the
window can then be derived from the product of their generating functions:

α(t) =
λ∏

j=1

[(φj

1

)
t +

(
φj

2

)
t2 + ... +

(
φj

φj

)
tφj

]
. (2)

The coefficient [tw]α(t) gives the number of ways of filling w slots with genes
from the λ families, which is just N (w, λ, T ). Note that the tw term in α(t)
will be a sum of products of the form β1t

x1 · β2t
x2 · · ·βλtxλ = (

∏
j βj)tw, where

the exponents of the dummy variable, t, sum to w. By inspecting Equation (2),
we see that since βj is the coefficient of txj , it must be of the form βj =

(
φj

xj

)
.

The term [tw]α(t) corresponds to packings containing x1 genes from the first
family, x2 genes from the second family and so forth, where βj corresponds to
the number of ways of choosing xj genes from the jth gene family. Summing
over all packings, we obtain

N (w, λ, T ) =
∑

(x1,···xλ)

(
φ1

x1

)(
φ2

x2

)
· · ·

(
φλ

xλ

)
, (3)

where the sum is over the set of all λ-tuples (x1, . . . , xλ) such that



112 N. Raghupathy and D. Durand

λ∑
j=1

xj = w, (4)

and 1 ≤ xj ≤ φj , ∀j.
Let us illustrate the window packing problem with a simple example. Suppose

we wish to find the number of ways a window of size w = 7 can be packed with
four gene families (λ = 4), such that the window has at least one gene from
each gene family. Let the gene family sizes of T be φ1 = 1, φ2 = 2, φ3 = 3 and
φ4 = 4 and the 4-tuple (x1, x2, x3, x4) refers to a window packing that has x1

genes from the first gene family, x2 genes from the second gene family, x3 genes
from third gene family and x4 genes from the fourth gene family.

In order to find all possible packings, we need to find all 4-tuples satisfying
Equation (4); in this example

∑4
j=1 xj = 7. Since jth gene family can contribute

xj genes in
(
φj

xj

)
ways, the 4-tuple (x1, x2, x3, x4) can contribute

(
φ1
x1

)(
φ2
x2

)(
φ3
x3

)(
φ4
x4

)
window packings. For example, the tuple (1, 1, 1, 4) can contribute

(
1
1

)(
2
1

)(
3
1

)(
4
4

)
=

6 window packings. Table 1 lists the set of all possible 4-tuples and the number
of packings associated with each 4-tuple. By adding the number of packings for
each 4-tuple, we get the total number of ways the window can be filled with genes
from the four gene families as given in Equation (3). Here, N (7, 4, T ) = 76.

Table 1. Number of ways packing a window of size w = 7 with four gene families of

size {1,2,3,4}

λ-tuple Number of
(x1, x2, x3, x4) packings

(1, 1, 1, 4) 6
(1, 1, 2, 3) 24
(1, 1, 3, 2) 12
(1, 2, 1, 3) 12
(1, 2, 3, 1) 4
(1, 2, 2, 2) 18

N (7, 4, T ) 76

3.2 Orthologous Clusters with Arbitrary Gene Families

We estimate the significance of a gene cluster using the probability that two
windows, arbitrarily chosen from two random genomes, share at least m gene
families. We enumerate over all sets of k gene families, for each value of k from
m to r. For each such set, F , we determine the probability that W1 contains
only genes in families in F , including at least one from each family, followed by
the conditional probability that at least l of the families in F also appear in W2.

Expressed formally, the probability that W1 and W2 share at least m gene
families is
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qo(m) =
r∑

k=m

[ ∑
F∈Fk

p1(F )
k∑

l=m

∑
E ∈ F l

E ⊆ F

p2(E)

]
, (5)

where F is the set of gene families in G1 and G2.
The probability that a given set, F , of k gene families is seen in W1 is

p1(F ) =
(

n1

r1

)−1

N (r1, k, F ) (6)

where N (r, k, F ) is the number of window packings given by Equation (3). To
determine, p2(E), we enumerate over all subsets of F of size l, where l ranges
from m to k. For each subset, E, we seek the probability that each family in E
is represented in W2 at least once and that no other family in F appears in W2.
We exclude all other families in F to avoid overcounting.

At least l slots in W2 must be filled with genes in E. The remaining r2 − l
slots may be filled either from families in E or from families that do not appear
in W1; i.e., genes from F \F . Let z be the number of slots filled with genes from
F \ F . By considering all possible values of z, we obtain

p2(E) =
(

n2

r2

)−1 ∑
z

N (r2 − z, l, E)
(

n2 − Φ(F )
z

)
(7)

where Φ(F ) =
∑

j∈F φ2j . The parameter z ranges from max{0, r2 − Φ(E)} to
r2 − l where Φ(E) is defined as above. The first term in the numerator is the
number of ways of filling r2 − z slots with genes from the l families in E. The
second term corresponds to all the ways of choosing the z outsiders from the set
of genes not included in any gene family in W1.

By substituting the expression in Equation (3) in Equations (6) and (7),
we get a statistic for individual clusters in terms of n1, r1, n2, r2, m and the
set of the gene families in G1 and G2. However, calculating this probability
requires the enumeration of all subsets of k gene families. For each such subset,
we must enumerate all packings satisfying Equation (4) and calculate a product
of binomials for each packing. Computing this probability is prohibitively slow.

3.3 Orthologous Clusters with Fixed Size Families

The complexity of calculating q(m) can be substantially reduced under the as-
sumption that all gene families are of equal size, φ. When gene families are of
equal size, it is not necessary to enumerate Fk, since all subsets of k gene fam-
ilies are indistinguishable. We can simply replace the first term,

∑
F p1(F ), in

Equation (5) with the product of the number of sets of k gene families times
p1(k), the probability that exactly k gene families of size φ are represented in
the window: ∑

F∈Fk

p1(F ) =
(
|F|
k

)
p1(k). (8)
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Invoking a similar transformation of the second term in Equation (5), the prob-
ability that W1 and W2 share at least m gene families simplifies to

qo(m) =
r∑

k=m

[(
nf

k

)
p1(k)

k∑
l=m

(
k
l

)
p2(l)

]
. (9)

Under the fixed size assumption, p1(k) and p2(l) correspond to the probability
that exactly k families appear in W1 and exactly l families appear in W2, respec-
tively. To calculate p1(k) and p2(l), we require an expression for N ′(w, λ, φ), the
number of window packings when all families are of fixed size. When φj = φ, βj

reduces to
(

φ
xj

)
and Equation (2) becomes

α′(t) =
[(φ

1

)
t +

(
φ

2

)
t2 + ... +

(
φ

φ

)
tφ
]λ

. (10)

The number of ways of observing λ gene families in a window of size w is given
by [tw]α′(t), yielding

N ′(ω, λ, φ) =
∑

(x1,···xλ)

(
φ
x1

)(
φ
x2

)
· · ·

(
φ
xλ

)
, (11)

where the sum is over the set of all λ-tuples (x1, . . . , xλ) satisfying Equation(4),
under the constraint that 0 < xi ≤ φ, ∀i.

In this case, we can avoid enumerating the λ-tuples using the following sim-
plification. Note that the right hand side of Equation (10) is a binomial series of
the form [(1 + t)φ − 1]λ. By applying two binomial expansions, we obtain

α′(t) = (−1)λ
λ∑

i=0

[
(−1)i

(
λ

i

)( i∗φ∑
j=0

(
i ∗ φ

j

)
tj
)]

. (12)

The number of ways of filling w slots with genes from the λ fixed size families is
just [tw]α′(t), yielding

N ′(w, λ, φ) = (−1)λ
λ∑

i=0

[
(−1)i

(
λ

i

)(
i ∗ φ

w

)]
. (13)

Notice that at least �w
φ � gene families are required to fill a window of size w.

Substituting the expression for N ′(w, λ, φ) in Equation (6) and restricting the
lower bound on the dummy variable i to � r1

φ �, we obtain

p1(k) =
(

n1

r1

)−1

(−1)k
k∑

i=
 r1
φ �

[
(−1)i

(
k

i

)(
i ∗ φ

r1

)]
. (14)

Similarly, p2(l), the probability that W2 contains exactly l gene families is(
n2

r2

)−1 ∑
z

(−1)l
l∑

i=
 r2−z
φ �

[
(−1)i

(
l

i

)(
i ∗ φ

r2 − z

)](n2 − kφ

z

)
(15)

where z ranges from max{0, r2 − kφ} to r2 − l.
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The fixed size approximation and the use of generating functions to enumer-
ate window packings result in an efficient approximation to the probability that
two windows, arbitrarily chosen from two random genomes, share at least m gene
families. The general gene family model, Equations (6) and (7), requires imple-
mentation of an algorithm to enumerate all λ-tuples satisfying Equation (4).
Furthermore, it is necessary to compute the product of λ binomial terms for
each of the tuples in the enumeration. In contrast, Equations (14) and (15) re-
quire only a simple summation and can be easily computed in Mathematica.
We can compute Equation (9) using the number of genes in each genome, the
window sizes, gene family sizes and the number of gene families shared between
the windows. Therefore, we only need information about the local regions and
the aggregate properties of the genomes to determine significance of individual
clusters.

4 Experimental Results

In this section, we demonstrate how the results derived in Section 3 can be
applied to test the validity of a pair of putative homologous chromosomal re-
gions. As an example, we applied our models, implemented in Mathematica, to
the MHC-like region, so called because it contains a conserved linkage group
that resides near the human Major Histocompatibility Complex. This conserved
homologous region, which has four copies in mammalian genomes, has been dis-
cussed in the molecular evolution literature extensively [16–21, 30, 53].

In recent literature, there have been many papers about conserved linkage
groups observed in eukaryotes that appear to be duplicated and, in some cases,
also conserved across several distantly related species (surveyed in [30,31,53]).
These include the mammalian MHC region, the regions surrounding the Hox
clusters [22], a region on chromosome 8 in human (FGR) [23] and a region
containing a Tbox subfamily on chromosomes 5 and 11 in mouse [28]. These
clusters typically contain five to fifteen genes spread over a window of 15 to
300 slots. Most of these studies do not present any statistical analysis testing
the significance of the clusters. A few use simple statistical tests based on a
reference region model with no correction for gene family size [53,30,21].

Several of these conserved regions have been the focus of particular inter-
est because four paralogous copies have been observed in mammals, leading
to the speculation that they could have arisen through the early vertebrate
tetraploidization postulated by Ohno [54]. The MHC-like region contains a con-
served linkage group of roughly a dozen genes (depending on which analysis you
look at) on chromosome 6p21.3 in human. Paralogous subsets of these genes are
also found on human chromosomes 1, 9 and 19. The four putative paralogous
regions in human and mouse have been studied extensively [16–20] as new se-
quence and mapping data has provided additional insights into the evolutionary
implications of the regions. The increasing availability of whole sequence data
has also led to the investigation of regions in other species with orthologous gene
content and organization that is suggestive of common ancestry for the entire
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Fig. 2. Significance of MHC-like cluster using the fly genome as reference (×) and the

human genome as reference (+)

region. These include mouse, C. elegans, D. melanogaster, S. Pombe and several
species of amphioxus [21,30,53].

We use a recent comparative analysis [30] of a chromosomal region on Droso-
phila chromosome X and the human MHC-like regions as an example for demon-
strating the application of our statistical tests. Danchin et. al. [30] investigated
a region delimited by Drosophila genes USP and Notch. USP is homologous to
human RXRA, RXRB and RXRG. RXRA and Notch are ”anchor” genes that
bracket the MHCII region on human chromosome 6, a region also containing
COL, ABC, RING and PSMB genes. Their analysis of Drosophila contigs in
the public databases turned up 183 non-redundant transcripts in this region. Of
these, 161 had significant matches in human, 32 of which included at least one
significant hit in one or more of the MHC-like regions. Based on phylogenetic
analysis, they [30] concluded that 19 of these were reliable orthologs. The two
original anchor genes used to identify the region were eliminated from the study,
since these were used to find the region do not constitute independent observa-
tions. Of the remaining 17 Drosophila genes in the study that had trusted human
orthologs within one or more MHC-like regions, four fell into a region containing
44 genes on chromosome 6p21.3 in human.

We investigated the probability of observing such a cluster by chance using
Equations (9), (14) and (15) and the following parameters nhs = 24194, ndm =
13833, rhs = 44, rdm = 161 and m = 4. Genome sizes were obtained from the
ensembl database (www.ensembl.org). Note that our method to determine the
significance of a gene cluster is not symmetric. When the sizes of the genomes
and/or the windows are different (n1 �= n2 and/or r1 �= r2) the results will
depend on which genome is designated G1. Therefore, we estimated the cluster
significance twice, using both the Drosophila and human regions as references.
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The dependence of cluster statistics on gene family size is shown in Figure 2.
These results show that cluster significance decreases rapidly with gene family
size. Note that the probability of observing a gene cluster is slightly lower when
Drosophila is used as reference. Since the second term in Equation (15) depends
on n2, the significance will decrease when G2 is the larger genome. The prob-
ability of observing a homologous cluster structured like the human MHC-like
cluster under the null hypothesis is greater than 0.1 for gene family sizes of four
or greater and is close to one by the time φ reaches ten. While these numbers,
taken alone, would suggest that the observed gene cluster is not statistically sig-
nificant, a comprehensive analysis would require comparison of the chromosomal
region in Drosophila with all four paralogous regions in human using a multiple
testing approach. Our intent here is not to reanalyze the data or question the
conclusions of the studies cited above, but rather to provide a concrete example
of how our models can be put to practical use in real biological studies.

5 Conclusion

We have presented a new combinatorial approach to determine the significance of
individual gene clusters. Our method takes gene family size into account and can
be used to determine the significance of gene clusters in the absence of complete
genomic context. We estimate the significance of gene clusters by determining
the probability that two regions, containing r1 and r2 genes respectively, share at
least m gene families. By using generating functions, we have developed tractable
expressions for the estimating the probability of observing orthologous gene clus-
ters in two genomes. To demonstrate the utility of the method, we have applied
it to estimate the significance of a well-studied conserved region in the fly and
human genome.
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Abstract. Gene cluster significance tests that are based on the num-
ber of genes in a cluster in two genomes, and how compactly they are
distributed, but not their order, may be made more powerful by the ad-
dition of a test component that focuses solely on the similarity of the
ordering of the common genes in the clusters in the two genomes. Here
we suggest four such tests, compare them, and investigate one of them,
the maximum adjacency disruption criterion, in some detail, analytically
and through simulation.

1 Introduction

The detection of a number of genes in close proximity in two genomes may
suggest an evolutionary association of these genes or indicate a functional rela-
tionship among them. Recently studied tests of significance of such gene clusters
[2–4] have focused on the number of genes in common in relatively short chro-
mosomal intervals in the two genomes, and not on the order of these genes. For
different gene clusters having the same number of genes, spatially distributed
in the same way, we might want to consider those clusters where the order is
more similar, though not necessarily identical, in the two genomes as being more
significant, and more indicative of a historical or functional relationship, than
clusters whose gene orders in the two genomes bear little relationship. For tests
such as those in the above-cited studies, where the significance level is inde-
pendent of gene order within the cluster, this level can be enhanced by taking
into account the significance of the gene-order similarity within the cluster in
the two genomes. This combined test would have greater power against the null
hypothesis of random gene order at the genomic scale in favour of alternative
hypotheses derived from evolutionary or functional models.

In this this paper, we first suggest four different ways of defining an order-
based “boost” to cluster significance, and investigate one of them in enough
detail so that it can be used for all cluster sizes and all values of the similarity
criterion. In Section 2 we define four measures of gene-order divergence and link
them to previous work on genome rearrangement and gene clusters. In Section
3, we show some properties of the maximum adjacency disruption measure of
order similarity. In the rest of the paper we develop tests based on this mea-
sure; in Section 4, an exact test for certain values of the maximum difference
measure, and in Section 5 exact tests for all small clusters. For large clusters,
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we tabulate significance levels based on large scale simulations in Section 6, and
on a simplified probabilistic model in Section 7. In Section 8, we compare the
critical regions three of the four proposed tests, on moderate-sized clusters. In
Section 9, we discuss the applicability of our method, and directions for further
research.

2 Four Measures of Gene-Order Similarity and Their
Motivations

Suppose we have identified, using some existing criterion, e.g., one of those in
[2–4], k genes that form a cluster in both genome A and genome B. Number
the clustered genes in genome A in order from 1 to k (ignoring any intervening
genes that are not in the scope of the cluster in genome B) and let g1, · · · , gk be
the order of these same genes in genome B. Similarly, re-number the genes from
1 to k according to their order on genome B, and let h1, · · · , hk be the order of
these same genes in genome A.

1. The maximum adjacency disruption criterion (MAD):

MAD = max
i=1,···,k−1

{max{|gi − gi+1|, |hi − hi+1|}},

the maximum, over all pairs of adjacent genes in the cluster in either genome,
of the difference in their positions in the gene order in the cluster in the other
genome. A low value of MAD means that no gene in the cluster has drifted
far from its position in the ancestral genome. MAD is symmetric with respect
to A and B. An asymmetric criterion somewhat similar to MAD was used
in [1].

2. The summed adjacency disruption criterion (SAD):

SAD =
∑

i=1,···,k−1

{|gi − gi+1| + |hi − hi+1|},

the sum, over all pairs of adjacent genes in the cluster in both genomes, of
the difference in their positions in the gene order in the cluster in the other
genome. This measures the overall movement of genes within the cluster
from their positions in the ancestral genome.

3. The breakpoint metric (BAD):

BAD = #(i=1,···,k−1){|gi − gi+1| > 1},

the number of times a pair of genes adjacent in the cluster in one genome is
not adjacent in the other. This is in effect a simple count of the adjacency
disruptions and has been used in comparisons of entire gene orders of genomes
[5], whereas here we are focusing on the order of genes in the cluster only.

4. The rearrangementdistance (RAD). The number of rearrangementoperations
(e.g., inversions, transpositions, block interchanges) required to transform the
order of the genes in one cluster into the order in the other one [6]. This is the
only measure we do not analyze here, for reasons detailed in Section 9.
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To test for a significant level of gene-order correspondence between a cluster’s
realizations in two genomes, we need to know the distribution of the test statistic
under a suitable null hypothesis, normally that gene order is purely random.
This may be done by counting the number of permutations of the integers from
1 to k having a given value of the statistic, either exhaustively, or by means
of a computing formula if this is available, or estimated through simulation or
approximated by a continuous model. We will calculate the distribution of the
MAD statistic, using all these approaches, depending on the cluster size k, and
we will compare it to SAD and BAD on all permutations of size 11 and 12.

3 Maximum Adjacency Disruption; One-Sided and
Two-Sided

Defining the one-sided versions of MAD,

MADAB = max
i=1,···,k−1

{|gi − gi+1|}, MADBA = max
i=1,···,k−1

{|hi − hi+1|},

it is not the case that MADAB always equals MADBA.

Example 1. : Consider B = 3 1 2 4. Then MADAB = 2. Renumbering the genes
in order in B as 1 2 3 4 translates into A = 2 3 1 4, so that MADBA = 3.

Limiting the MAD value of a cluster not only constrains pairs of adjacent genes
in one genome from being far apart in the other, it also keeps genes in the larger
neighbourhood of a given gene from dispersing too widely. For a given k,

Proposition 1. If

|gi − gi+1| ≤ a, for 1 ≤ i < k

then

|gi − gj | ≤ a|i − j|, for 1 ≤ i, j ≤ k.

Proof:

|gi − gj | = |
j−1∑
m=i

gm − gm+1| (1)

≤
j−1∑
m=i

|gm − gm+1| (2)

≤ a|i − j| (3)

Corollary 1. Let f(x) be an increasing concave function on [1, · · · , k]. Then

f(|i − j|) ≤ f(1)|i − j|.
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4 Enumerating Clusters Where a = 1, 2 and 3, and
Where a = k − 2 and a = k − 1

Being able to calculate the number of clusters of size k with a specific value of
a criterion is helpful for the construction of tests based on this criterion. Com-
puting formulae are currently known only for BAD (entry A001100 in Sloane’s
On-Line Encyclopedia of Integer Sequences [7].) Here we give partial results for
MAD. Let n(a, k) be the number of clusters of length k where MAD ≤ a.

Proposition 2. The following statements hold:

1. n(1, k) = 2, for all k
2. For a = 2, k > 5

n(2, k) = n(2, k − 1) + n(2, k − 3).

3. For a = 3, k > 12

n(3, k) = n(3, k − 1) + n(3, k − 2) + 3n(3, k − 4)
+3n(3, k − 5) − 3n(3, k − 6) − 3n(3, k − 7)

4. n(k − 1, k) = k!, for k > 1.
5. n(k − 2, k) = (k − 2)!(k2 − 5k + 8), for k > 2.

Proof:
1) The only clusters that have MAD = 1 are 1 · · ·k and k · · · 1.
2) One type of “valid” cluster, i.e., one that has MAD ≤ 2, is of form k γ,

where γ is any valid cluster on the first k−1 integers starting with k−1 or k−2,
or of form κ k, where κ is any valid cluster on the first k − 1 integers ending
with k− 1 or k− 2. There are n(2, k− 1) of these. The other type of cluster that
has MAD ≤ 2 is of form k− 1 k k− 2 γ, where γ is any valid cluster on the first
k − 3 integers starting with k − 3 or k − 4, or of form κ k − 2 k k − 1, where κ
is any valid cluster on the first k − 3 integers ending with k − 3 or k − 4. There
are n(2, k − 3) of these. Thus, for large enough k (starting with k = 6), we have
n(2, k) = n(2, k − 1) + n(2, k − 3).

3) An argument similar to that for a = 2, but with many more cases, shows
that for k even,

n(3, k − 2) = n(3, k − 3) + n(3, k − 5) + 3n(3, k − 6) + 3n(3, k − 7)

+

k−4
2∑

i=2

n(3, k − (2i + 3))

So that

n(3, k) − n(3, k − 2)
= n(3, k − 1) + 3n(3, k − 4) + 3n(3, k − 5) − 3n(3, k − 6) − 3n(3, k − 7)

and the analogous calculation for k odd yields the same result. Therefore,
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n(3, k) = n(3, k − 1) + n(3, k − 2)
+3[n(3, k − 4) + n(3, k − 5) − n(3, k − 6) − n(3, k − 7)].

4) The criterion a = k − 1 holds for any of the k! clusters.
5) This follows from n(k−2, k) = n(k−1, k)−n′(k−1, k), where n′(k−1, k) =

4(k − 2)(k − 2)! is the number of clusters with a maximum disruption score of
exactly k−1. The latter is the number of clusters such that {g1, gk} = {1, k} plus
the number such that {h1, hk} = {1, k} less the number where both conditions
hold. All of these may be evaluated in a straightforward manner, yielding the
above expression for n′(k − 1, k).

The first few values of n(2, k) are 0, 0, 6, 8, 12, 18, 26, · · ·. The recurrence n(2, k) =
n(2, k−1)+n(2, k−3) only “kicks in” at k = 6. The particular series of numbers
starting with 0, 0, 6, 8, 12, 18 has not been mentioned before, but the recurrence,
with different initial values, has cropped up in many different contexts, listed as
sequence A000930 in Sloane’s On-Line Encyclopedia of Integer Sequences [7].
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5 Exact Enumeration for Moderate Values of k

As a first step in constructing a usable test based on MAD, for k ≤ 13, we
generated all permutations on the integers from 1 to k and calculated the MAD
value for each when compared to the identity permutation. We then calculated
the n(a, k) as defined in Section 4, normalized by k! to compute the p-value
p(a, k), and plotted the results on a logarithmic scale in Figure 1. Given a cluster
with MAD = a, then, its statistical significance can be assessed from the curve
for clusters of size k.

6 Simulations for Large k

Though it would be feasible using high-performance methods to calculate the
test exactly for k somewhat larger than 13, this would exceed 16 or 17 with
great difficulty. Instead, we simply constructed 100,000 random clusters with
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k terms, for k running from 10 to 100, in steps of 10. The curves in Figure
2 were constructed in the same way as the previous figure, except that the
normalization was by 100,000 instead of by k!, and that the curves are plotted
against a = k − 1, k − 2, · · · rather than against a = 1, 2, · · ·.

7 A Model for Large k

Let α= a
k . To model the MAD criterion |gi − gi+1| ≤ a for large k under the

null hypothesis, i.e., for genes randomly ordered within clusters, we consider two
points at random on the real unit interval, and ask what is the probability they
are within α of each other, where 0 <α< 1. This is just 1−(1−α)2, representing
the probability of adjacency disruption of less than α. Since k is large, we explore
the assumption that these disruptions are independent across all 2k adjacencies
in the two genomes. Then the probability that all the disruptions are less than
α is [1 − (1−α)2]2k = [α(2−α)]2k.
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Plotting p = [a
k (2 − a

k )]2k in Figure 3 demonstrates an improved fit of this
simplified model for large values of k (50-100), compared with the case k = 10.

8 A Comparison of Adjacency Disruption Measures

Tests based on the four measures listed in Section 2 will not, of course, all have
the same critical region. To compare the MAD, BAD and SAD criteria, we
calculated them on all 4×107 clusters of size 11, and counted how many clusters
fell into the critical regions of both members of a pair of tests. We aimed for
equal critical regions of size close to 5%, but because we were restricted to
discrete choices of a, the closest we could come was defined by an a for each
test (detailed in the table legend) that resulted in approximately 8% of the
criteria values falling on or below this threshold. We then repeated this for the
4.79× 108 clusters of size 12; this time the critical regions closest to 5% all had
size approximately 2%.

Table 1. Differences among critical regions of three tests. k = 11, total clusters 4×107,

criteria for MAD: a ≤ 7, BAD: a ≤ 6, SAD: a ≤ 63. k = 12, total clusters 4.79 × 108,

MAD: a ≤ 7, BAD: a ≤ 6, SAD: a ≤ 67.

Clusters in critical regions (α = 7.5 − 9.0%) MAD SAD BAD
(k = 11)Ri(×106) 3.01 3.06 3.55

Compared with SAD BAD MAD
Intersection Ri ∩ Rj 1.09 1.7 0.51
Union Ri ∪ Rj 4.98 4.91 6.05
Symmetric difference RiΔRj 3.89 3.2 5.54

Normalized difference
RiΔRj

Ri∪Rj
0.782 0.653 0.916

Clusters in critical regions (α = 2.0 − 2.3%) MAD SAD BAD
(k = 12)Ri(×106) 9.65 10.1 11

Compared with SAD BAD MAD
Intersection Ri ∩ Rj 3.28 3.91 0.81
Union Ri ∪ Rj 16.46 17.18 19.84
Symmetric difference RiΔRj 13.18 13.27 19.03

Normalized difference
RiΔRj

Ri∪Rj
0.801 0.772 0.959

Table 1 shows that SAD is closer to both MAD and BAD than they are to
each other. This is understandable in that the sum of the adjacency disruptions
should reflect not only the number of disruptions but also the size of the largest
one. The number of disruptions (BAD), however, and the size of the largest
one (MAD), would seem only very indirectly related. Indeed, almost all the
clusters satisfying both the MAD and BAD criteria (0.51 × 106 for the k = 11
experiment, and 0.81 × 106 for the k = 12 experiment) also satisfy the SAD
criterion (0.48 × 106 and 0.75 × 106, respectively).
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9 Discussion

The study of gene clusters is increasingly focused on genomes where the genes
have been located by virtue of genomic sequencing. Such clusters include not only
gene position and hence gene order, but also gene orientation, or strandedness. In
comparative genomics, such data are represented not by ordinary permutations,
but by signed permutations, where the sign on a term in genome B indicates
the DNA strand, or reading direction, relative to the direction of the same gene
in genome A. In this context, we can simply ignore the sign, or else devise
some way of taking it into account. For BAD, and particularly for RAD, signed
permutations are the natural domain of application. This is one reason why we
did not analyze RAD in the present study. The main adaptation is that in signed
permutations, the configuration i + 1, i in genome B is considered a disruption
of adjacency, but −(i + 1),−i is not, when the two genes are ordered as i, i + 1
in genome A. For MAD and SAD, there is no natural way of taking sign into
account and it seems most appropriate to ignore it.

Note that both MAD and SAD are asymmetrical, in that MADAB is not
always equal to MADBA and SADAB is not always equal to SADBA. MAD is
symmetrical by virtue of taking the maximum over both directions, and SAD
by summing over both directions. Both BAD and RAD are symmetrical, on the
other hand, and that is why it suffices to define them asymmetrically as we did
in Section 2.

How should our tests for gene order be combined with tests for gene cluster-
ing such as r-windows and max-gap in [2–4]? The intuitive notion of a cluster
involves spatial proximity of a group of genes similarly ordered in both genomes.
But the most straightforward way of combining the two kinds of test, simply
multiplying the two significance levels, is not an acceptable strategy, since it
then only requires that one of the two tests be significant for the combined test
to be significant. For example, if a putative cluster with k genes is evenly spaced
across the entire genome, so that it is really the antithesis of the intuitive notion
a cluster, but the order is 1 · · ·k, then it will be still be highly significant (for
large k) when the two significance levels (clustering and order) are multiplied
together. The critical region of the combined test thus includes groups of genes
which cannot be considered clusters. This problem does not seem to have been
studied in the literature, where it is sometimes assumed that the significance
level of a cluster of k genes may be enhanced by a factor of (k!)−1 if the gene
order is identical in both genomes.

For clusters with borderline (or better) p-values, however, the multiplicative
strategy effectively boosts the power of the cluster test against evolutionarily or
functionally meaningful alternatives.
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Abstract. The objective function of the genome rearrangement prob-
lems allows the integration of other genome-level problems so that they
may be solved simultaneously. Three examples, all of which are hard: 1)
Orientation assignment for unsigned genomes. 2 ) Ortholog identification
in the presence of multiple copies of genes. 3) Linearisation of partially
ordered genomes. The comparison of traditional genetic maps by rear-
rangement algorithms poses all these problems. We combine heuristics
for the first two problems with an exact algorithm for the third to solve
a moderate-sized instance comparing maps of cereal genomes.

1 Introduction

The first chromosomal map dates from 1913 [30], at the same time the definitive
chromosomal theory of heredity [19] was being elaborated. Soon comparative
mapping had become an integral part of genetic research, e.g., Fig. 1 in [31],
published in 1921. Long before the genomic era, comparative maps existed for
Drosophila and other insects, mammals, including humans, livestock and rodents,
cereals and other cultivars and other eukaryotic and prokaryotic groups.

Despite their immediate availability and the wealth of evidence they contain
about evolutionary history, traditional comparative maps were bypassed when
genome rearrangement algorithms ([14,15]), inspired by analyses of organelle and
other small genomes (e.g., [23,29]), were adapted for direct use on DNA segments
derived from whole nuclear genome sequences [24,2,4].

In this paper we discuss an approach to the application of rearrangement
methods to traditional comparative maps, i.e., maps based on estimates of gene
and marker locations in nuclear genome, and not directly on genome sequence.
First, what are the difficulties we encounter when we attempt this?

Coarseness. Lack of resolution of the maps, i.e., two or more genes being
mapped to the same position in one of the genomes. Genome rearrange-
ment algorithms require that the input markers be totally ordered along
each chromosome.

Missing Data. Order ambiguity in composite maps. Because maps constructed
from a single type of experimental data usually contain a limited number
of markers, we are motivated to combine maps for the same genome from
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different sources. Two genes or markers which are not ordered by any of the
component maps will often remain unordered in the composite map. Again,
rearrangement algorithms require that the input markers be totally ordered
along each chromosome.

No Signs. No information about reading direction, i.e., which DNA strand the
gene or marker is on. This information is not available from many of the
methods used to construct maps. Genome rearrangement algorithms require
this “orientation” information for efficient and exact execution.

Matches. Uncertain orthology.
Notation. Different nomenclatural traditions in the genetics communities

producing the chromosomal maps for two species mean different anno-
tations and difficulties for the analyst in deciding which markers in one
genome correspond to markers in the other. Rearrangement algorithms
require that genes or other markers on the two genomes be unequivocally
paired as being derived from a single entity in an ancestral genome.

Paralogy. Several copies or near copies of a gene in a map. This leads to
a one-to-many or many-to-may correspondence between the two maps.
Genome rearrangement algorithms require one-to-one correspondences
as input.

Conflicts. When two or more relatively sparse maps of a genome, compiled
from different sources, are combined prior to comparison with the map of
another genomes, there is often conflict concerning the orders of a some of
the markers on both maps.

With the possible exception of paralogy, these difficulties are neatly avoided
when complete genome sequences are being compared at the sequence level
[24,2,4], though of course there are many other technical problems to be solved
in that approach.

The difficulties listed above all have in common that we are missing some es-
sential biological information required to carry out genome rearrangement anal-
ysis. Moreover, in each case (except notation) the genome rearrangement
problem may be reformulated in such a way that the solution not
only provides a minimal series of reversals and/or translocations
necessary to transform one genome into another, but also supplies
an optimal estimate of the missing information. It is the comparative
context, together with the rearrangement-minimizing objective function, which
“fills in” the gaps in our biological knowledge in the most reasonable way. This
unexpected bounty from the rearrangement analysis is what is alluded to in the
title of this paper.

Exact algorithms have been published to take care of coarseness, missing
data, no sign and paralogy, all requiring exponential worst-case computing
time. The latter two, the topics of Sections 3 and 4, respectively, have been
proved NP-hard, and we have conjectured as much for the first two, which are the
main focus of this paper, as discussed in Section 5. As for the notation problem,
we may rely on one of the curated comparative browsers, such as Gramene [36]
for cereals and some other plants, the NCBI Human-Mouse homology maps [20],
UCSC Genome browser [35] for animals, or CompLDB [21] for livestock.
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Solution of a typical comparative map rearrangement problem would require
treating at least coarseness, no sign and paralogy simultaneously, and usu-
ally missing data and conflict as well. We will state the pertinent combi-
natorial optimization problem, but its exact solution would be feasible only
on very particular, small instances. We do, however, give results of applying
an exact algorithm allowing for coarseness and missing data, in all gener-
ality, applied to data where no sign, paralogy and conflict are dealt with
heuristically during preprocessing, using some of the key ideas in their respective
algorithms.

In Section 2, however, we will start with the essentials of genome rearrange-
ment theory.

2 The Bicoloured Graph in Rearrangement Algorithms

Hannenhalli and Pevzner [15] showed how to find a shortest sequence of re-
versals and translocations that transform one completely specified genome χ
with n genes on k chromosomes into another genome ψ of the same size but
with h chromosomes, in polynomial time. Completely specified means that each
chromosome is totally ordered, the sign of each gene is known, and there is no
paralogy.

As described in [34], we construct a bicoloured graph on 2n + 2k vertices
that decomposes uniquely into a set of alternating-coloured cycles and h + k
alternating-colour paths. First, each gene x in χ determines two vertices, xt and
xh. Two dummy vertices ei1 and ei2 are added to the ends of each chromosome
χi. The adjacencies in χ determine red edges. If x is the left neighbour of y in
χ, and both have positive polarity, then xh is connected by a red edge to yt. If
they both are negative, xt is joined to yh. If x is positive and y negative, or x
is negative and y positive, xh is joined to yh, or xt is joined to yt, respectively.
If x is the first gene in χi, then ei1 is joined to xt or xh depending on whether
x has positive or negative polarity, respectively. If x is the last gene, then ei2 is
joined to xt or xh depending on whether x is negative or positive.

Black edges are added according to the same rules, based on the adjacencies
in genome ψ, though no dummy vertices are added in this genome.

Each vertex is incident to exactly one red and one black edge edge, except
for the dummies in χ and the (non-dummy) vertices at the ends of chromosomes
in ψ, which are each incident to only a red edge. The bicoloured graph decom-
poses uniquely into a number of alternating cycles plus h + k alternating paths
terminating in either the dummy vertices of χ or the end vertices of ψ, or one of
each. Suppose the number of these paths that terminate in at least one dummy
vertex is j ≤ h + k. If the number of cycles is c, then the minimum number of
reversals r and translocations t necessary to convert χ into ψ is given by:

r + t = n − j − c + θ (1)

where θ is a correction term that is usually zero for simulated or empirical data.
For simplicity of exposition, we ignore this correction here. Indeed, in a recent
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framework [11] allowing p transpositions and more general block interchanges
via circular intermediate chromosomal fragments, θ ≡ 0, and we simply have

r + t + 2p = n − j − c. (2)

The n− j − c actual rearrangement steps for transforming χ into ψ can then be
found via certain well-defined operations on the cycles of the bicoloured graph.

3 Sign Assignment

Our first problem is that of adding signs to an unsigned genome so as to a
achieve a minimal reversal distance to the identity permutation 1, · · · , n. This
is equivalent to the problem of sorting an unsigned permutation, known to be
NP-hard [7].

As conjectured in [17] and proved in [16], for all segments of the permutation
consisting of three or more consecutive integers (strips) in increasing order, plus
signs can be given to all these integers, and for all decreasing strips, minus signs
can be given, and this assignment is consistent. with a solution. In [16], it is
also shown how to give signs to 2-strips. The algorithm these authors develop is
exponential only in s, the number of singletons, and is polynomial if s is O(log n).
Unfortunately, in comparative maps s often seems closer to O(n).

Though there is much recent literature on approximation to unsigned reversal
distance, relatively little work has been done on exact algorithms. Caprara et
al. [8] have implemented a branch-and-price algorithm that enables the rapid
sorting of up to 200 elements. Tesler (personal communication) has extended
the approach in [16] to reversal and translocation distance, and implemented it
in GRIMM [33].

4 Duplicate Genes, Paralogy, Gene Families

When there are paralogs, gene orders cannot be modeled as permutations, but
only as more general strings. Though sorting strings by reversals can be done in
polynomial time, this does not automatically give the reversal distance between
strings, in contrast to sorting permutations by reversals, which is equivalent to
calculating reversal distance. Indeed, reversal distance for strings is NP-hard
[26].

The problem in analysing genomes containing paralogs is how to decide which
paralog in one genome should be identified with which one in the other genome,
in a biologically meaningful way. Thus string-based analyses that attempt to
match all or as many as possible of the paralogs of a gene in one genome to
distinct paralogs in the other are only meaningful under the often questionable
assumption that all paralogs were present in the common ancestor genome.

A less ambitious, but biologically more reasonable, approach is to try to
match only one paralog of each gene in one genome to one in the other, such
that the gene orders of the matched paralogs (the exemplars) of each family
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result in a minimal reversal distance [27]. The hypothesis motivating this is that
genomes reduced to contain only these exemplars will better tend to reflect the
actual reversal history than reduced genomes made up of any other choice of
exemplars, using a parsimony argument.

There is a growing literature on the problem of incorporating paralogy into
genome rearrangement theory. This is most meaningfully carried out within the
phylogenetic context [28,3], taking into account that the origin of paralogs in du-
plication events may occur on earlier or later branches of the evolutionary tree.
In addition to work characterizing, approximating or generalizing the exemplar
approach [6,22], there is research on rearrangement in the context of string the-
ory [10,26], conserved interval/block theory [1,3] and other a number of other
approaches [9,32]. Virtually all of these are based on the same principle, that
matching of paralogs should minimize the rearrangement distance

5 Partial Order

A linear map of a chromosome that has several genes or markers at the same
position π, because their order has not been resolved, can be reformulated as a
partial order, where all the genes before π are ordered before all the genes at π
and all the genes at π are ordered before all the genes following π, but the genes
at π are not ordered amongst themselves.

Fig. 1. (Left) Construction of DAGs from individual databases each containing partial

information on genome, due to missing genes and missing order information, followed

by construction of combined DAG representing all known information on the genome.

All edges directed from left to right. (Right) Edges added to DAG to obtain DG

containing all linearization as paths (though not all paths in the DG are linearizations

of the DAG!). Each arrow represents a set of directed edges, one from each element in

one set to each element of the other set.
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For genomes with two or more gene maps constructed from different kinds
of data or using different methodologies, there is only one meaningful way of
combining the order information on two (partially ordered) maps of the same
chromosome containing different subsets of genes. Assuming there are no con-
flicting order relations (a < b, b < a) nor conflicting assignments of genes to
chromosomes among the data sets, for each chromosome we simply take the
union of the partial orders, and extend this set through transitivity.

All the partial order data on a chromosome can be represented in a directed
acyclic graph (DAG) whose vertex set is the union of all gene sets on that chro-
mosome in the contributing data sets, and whose edges correspond to just those
order relations that cannot be derived from other order relations by transitivity.
The outcome of this construction is illustrated on the left of Figure 1.

We can extend genome rearrangement theory to the more general context
where all the chromosomes are general DAGs rather than total orders [37,38].
The rearrangement problem becomes: to infer a transformation sequence
(translocations and/or reversals) for transforming a set of lin-
earizations (topological sorts), one for each chromosomal DAG in
the genome of one species, to a set of linearizations of the chromo-
somal DAGs in the genome of another species, minimizing the number
of translocations and reversals required.

A DAG can generally be linearized in many different ways, all derivable from
a topological sorting routine. All the possible adjacencies in these linear sorts can
be represented by the edges of a directed graph (DG) containing all the edges
of the DAG plus two edges of opposite directions between all pairs of vertices,
which are not ordered by the DAG. This is illustrated on the right in Figure 1.

We can make a bicoloured graph from the set of edges in the DGs for two
partially ordered genomes. In the resulting graph, each of the DAG edges and
both of the edges connecting each of the unordered pairs in the DG for each
chromosome represent potential adjacencies in our eventual linearization of a
genome. The n genes or markers and 2k dummies determine 2n + 2k vertices
and the potential adjacencies determine the red and black edges, based on the
polarity of the genes or markers. Where the construction for the totally ordered
genomes contains exactly n + k red edges and n − h black edges, in our con-
struction in the presence of uncertainty there are more potential edges of each
colour, but only 2n+k−h can be chosen in our construction of the cycle graph,
which is equivalent to the simultaneous linearization by topological sorting of
each chromosome in each genome. It is this problem of selecting the
right subset of edges that makes the problem difficult (and, we
conjecture, NP-hard.)

Our approach to this problem is a depth-first branch and bound search in
the environment of h + k continually updated partial orders, one for each chro-
mosome in each genome. The strategy is to build cycles and paths one at a time.
After each one is completed, the current best construction serves as a bound to
compare against the maximum number of cycles and paths that could possibly
be built with the remaining eligible edges. The effect of the current bound be-
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comes greater every time a potential edge is chosen for the graph, because this
generally makes many other edges ineligible to be chosen at later steps. This is
not just a question of avoiding multiple edges of the same colour incident to a
single vertex, but also combinations of edges that are incompatible with one of
the DAGs.

We have focused here on obtaining the cycle decomposition; this is equivalent
to optimally linearizing the partial orders, so that finding the rearrangements
themselves can be done using the previously available algorithms and software,
e.g., GRIMM [33].

One problem we have not dealt with is conflict; different maps of the same
genome do occasionally conflict, either because b < a in one data set while a < b
in the other or because a gene is assigned to different chromosomes in the two
data sets. There are a variety of possible ways of resolving order conflicts or,
equivalently, of avoiding any cycles in the construction of the DAG. One way is
to delete all order relations that conflict with at least one other order relation.
Another is to delete a minimal set of order relations so that all conflicts can be
resolved. Perhaps the approach that best balances loss of information with ease
of application and interpretation is to discard a minimum set of gene occurrences
so that all order conflicts are resolved. This method also resolves conflicts due
to gene assignment to different chromosomes. Any gene that is discarded from
all the data sets for one genome has, of course, to be discarded from the other.

6 Synthesis and Application

Given a map comparison that suffers from some combination of coarseness,
missing data, no sign and paralogy, we can ask: simultaneously find the
exemplars and sign assignments resulting in a minimum number of translocations
and inversions necessary to transform some DAG linearisation of one genome into
some DAG linearisation of the other. Since all three component problems are
hard, there is scant hope that their combination is tractable. In this section, we
describe a practical approach to one problem of this type.

Note that if there is conflict, we might want to avoid discarding exemplars
in resolving conflict; if that is impossible, then we should at least take into
account the sizes of any discarded gene families in assuring a minimum of genes
occurrences are discarded. In any case, this minimum should be established
beforehand, and should constrain the exemplar selection, if this is an issue. Under
this one constraint, the goal is the minimization of genomic distance over all
combinations of exemplar choices, eligible conflict resolutions, sign assignments
and DAG linearisations,

The particular application we study, using the implementation of the DAG
linearisation described in [38], is the comparison of the maize and sorghum
genomes. We used one set of genomic markers for maize [25] and two for sorghum
[18,5] as accessible in Gramene [36]. We extracted all markers registered as hav-
ing homologs in maize and at least one of the sorghum datasets. This gave
463 marker occurrences in maize and 387 in sorghum, based on 296 total non-
homologous markers.
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Fig. 2. DAGs for 10 sorghum chromosomes, scaled by number of markers analysed

Partly because this size of this problem is excessive for our implementation,
we ignored any pair of chromosomes, one in maize and one in sorghum, with less
than four markers in common. Some threshold, though perhaps not as large as
four, is also justified by the facts that occasional syntenies of this sort are often
the result of marker homology assignment or other error, and that especially
in the case of singletons, the rearrangement solution simply includes two or
three rearrangements solely to account for the position of this marker, and is
independent of the rearrangement of the rest of the genome. This step left us
with 381 marker occurrences in maize and 301 in sorghum, based on 263 total
non-homologous markers. Thus by removing only 11% of the non-homologous
markers from the original data, we remove 65 % of the excess paralogs, consistent
with our suspicion that these do not represent orthologies.

As a next step, we identified all strips, as this is crucial not only to solving no
signs, but is also helpful for paralogy and conflict. To take further advantage
of strips, we removed paralogs and markers involved conflicts whenever they
interrupted contiguous strips. We then found the exemplars for the remaining
paralogies and resolved the remaining conflicts. To further reduce the size of the
problem, we discarded a number of other singletons.

The remaining markers in the two sorghum and one maize datasets, rep-
resenting 191 different markers, organized into 99 strips and singletons, could
then be input into our exact linearisation algorithm. The DAGs for the sorghum
chromosomes are illustrated in Figure 2. The solution involved 6 non-trivial
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Fig. 3. Conserved segments on sorghum chromosomes, scaled by number of markers

analysed

cycles (more than two edges) and 20 paths, implying a total of 73 inversions and
translocations. Figure 3 portrays the configuration of the conserved segments in
the two genomes, disposed on the sorghum chromosomes.

7 Discussion

A generally usable algorithm for the simultaneous solution of the linearisation
and sign assignment problems seems feasible, since both can be handled within
the partial order framework, though of course this is still a worst-case hard
problem. There are many approaches possible to improve the current bound, to
find a better sequence of edges as candidates to add to the current alternat-
ing colour cycle, and to incorporate heuristics, such as formalizing our strip-
maximization/singleton-minimization procedure for discarding the most likely
erroneous markers.

The situation with paralogy and conflict is more complicated, as the strong
constraint of acyclicity in the DAG representation of the map data cannot be
satisfied. Nevertheless, there is hope for some method drawn from the homology
assignment literature we have cited to be incorporated into the solution of these
problems in the comparative map context. The maize genome is known to have
originated in a genome doubling event [13]; thus the treatment of duplicates
through the exemplar or similar paradigm may be less appropriate than a genome
halving analysis [12], which is only of polynomial complexity.
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Abstract. Asymmetric functional divergence of paralogues is a key as-
pect of the traditional model of evolution following duplication. If one
gene continues to perform the ancestral function while the other copy
evolves a new function then we might expect a period of accelerated se-
quence evolution following duplication in one of the copies. In keeping
with this prediction, many individual examples of asymmetric divergence
at the level of protein function have been observed that are accompanied
by asymmetric divergence at the sequence level. While several large-scale
studies suggest that asymmetric divergence is common across a range of
different organisms the degree to which they can be considered to provide
an accurate estimate of its prevalence and therefore of the importance
of this mode of divergence depends on both the accuracy and power of
the methods that have been used. We investigated two methods that can
be used to detect asymmetric duplicates using simulated data and real
data from Arabidopsis thaliana. One of the methods detects departure
from a local molecular clock for amino acid sequences and has been used
previously. The second method is novel and tests for different selective
constraints along the duplicated lineages using codon models of evolu-
tion. This approach is less prone to false positive results but has lower
power than the molecular clock method. We find that the power to de-
tect asymmetric divergence is low with both methods unless the effect
is strong and report a surprising lack of strong evidence for asymmetric
divergence in paralogues derived from the most recent round of genome
duplication in Arabidopsis.

1 Introduction

Whether or not duplicated genes evolve at the same rate following gene duplica-
tion has important implications for models of how gene duplication contributes
to the evolution of functional novelty. Arguably, asymmetric evolution following
duplication lends some support to neofunctionalization models that assert that
one gene of a duplicate pair often continues to perform the ancestral function,
while the duplicate becomes free to evolve novel functionality [1]. Several models
have been proposed that do not necessarily imply asymmetry. Both members of
a duplicated pair could evolve under relaxed constraint because of redundancy
and reduced purifying selective pressure [2]. The subfunctionalisation model [3,4],
proposes that the protein function [3] and/or activity [4] of the ancestral gene are
partitioned among the daughter genes. Most recently, hybrid models have been
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proposed by He and Zhang [5] and Rastogi and Liberles [6] in which subfunc-
tionalization, which may be symmetric or asymmetric, occurs rapidly followed
by neofunctionalization on a longer timescale.

Although asymmetry is not inconsistent with subfunctionalisation models [5]
several examples of asymmetric divergence that appear to be associated with
evolution of novel function through some kind of neofunctionalization process
have been reported [7,8] and several (though not all e.g. [2,9]) previous stud-
ies have found high proportions of asymmetric paralogues in a wide range of
organisms [8,10,11]. Individual examples of accelerated paralogue evolution can
provide valuable insights into the function and the evolution of specific proteins
and an estimate of the extent to which duplicated genes diverge asymmetrically
can inform our understanding of how genomes evolve.

Methods that have been developed to detect asymmetric divergence of dupli-
cates typically differ in the type of molecular sequences used (nucleotides, amino
acids or codons), in the approach to identifying homologous sequences and in
the criteria for identifying asymmetry. Several methods use triplets of sequences
that include a duplicated pair and an outgroup sequence, either from the same
organism [10] or from a related organism [8,9,11]. Given a pair of duplicated
genes and an outgroup, duplicate genes that depart from clock-like evolution
can be detected using a relative rate test (e.g. [2,9,12]). These methods require
a rooted phylogenetic tree and are highly prone to false positive inference when
an incorrect outgroup is used (Fig. 1b,c). Using protein sequences of duplicated
yeast genes, Kellis et al. [8] uncovered several interesting examples of asymmetric
divergence among the remnants of genome duplication in Saccharomyces cere-
visiae. In this case and in several earlier studies duplicate pairs were identified
on the basis of both sequence similarity as well as genomic position and the out-
group was derived from a species that diverged from S. cerevisiae prior to genome
duplication. However, even in studies such as this that make use of positional
information to identify paralogues some of the examples of asymmetry detected
may still be due to incorrect phylogeny. Incorrect choice of outgroup could re-
sult, for example, from ancient tandem duplication predating both speciation
and the genome duplication event and subsequent loss of different members of
the tandem pair in the two genomic regions created during genome duplication.
In a study in which a relatively small proportion of asymmetric paralogues is
detected even a small percentage of incorrect outgroup sequences could account
for a substantial proportion of the detected examples because each incorrect
outgroup can have a high probability of yielding a misleading result (Fig. 1c).

Conant and Wagner [10] used a codon-based method to infer asymmetry by
estimating models that included either tied or separated parameters for the rate
of nonsynonymous substitution (Ka) along the branches of a phylogenetic tree
leading to the duplicated genes. Their method is similar to methods that measure
departure from clock-like evolution of amino acid sequences although it does
have some advantages over amino acid methods. For example, it distinguishes
naturally between amino acid replacements that require different numbers or
types of nucleotide substitutions. However, unlike some methods that are based
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Fig. 1. (a) The tree topology used to generate the simulated data sets. A and B are par-

alogues and O is an outgroup. The branch leading to the outgroup was 50% longer than

the branch leading to the unaccelerated paralogue. (b) Relative rate tests for asymme-

try using triplets of sequences compare sequence divergence against the assumption of

a local molecular clock using a rooted tree. (c) Incorrect outgroup identification will

result in comparison of the dashed branch to the grey branch and will normally re-

sult in rejection of the null hypothesis (symmetric divergence) provided that the time

between point x and y is sufficiently long.

on clock-like evolution of amino acid sequences it does not take account of amino
acids properties. Because it measures nonsynonymous divergence this method
also requires a rooted phylogeny.

In this paper we discuss an alternative codon-based method, which, as far
as we are aware, has not previously been used to detect asymmetric paralogue
divergence. In our approach the likelihood of a model in which ω, the ratio of
nonsynonymous to synonymous substitution rates, is allowed to vary is com-
pared to the likelihood of a model in which ω is constrained to be equal along
the branches leading to the duplicated genes. Because it is based on an estimate
of selective constraint, which is relatively independent of divergence, this method
can accommodate different rates of mutation in different genomic regions, pro-
vides an estimate of the selective constraint along specific lineages and can be
less sensitive to incorrect outgroup assignment. This is so because it does not
require a rooted tree. Since there is only one unrooted tree topology for three
sequences, incorrect tree topology is no longer possible. Nonetheless, this method
is still vulnerable to some extent to incorrect outgroup assignment for two rea-
sons. First, the hypothesis being tested depends on correct identification of the
outgroup. If the outgroup is incorrect then a positive result could be obtained
even if both copies of the gene experienced a period of relaxed selection following
duplication. Secondly, ω tends to be underestimated for longer branches if there
is inadequate correction for site to site rate variation [13] and this could cause the
longer branch leading to one of the duplicates (Fig. 1c) to appear to have a lower
rate of evolution. In this study we investigated the power of this codon-based
method and compared it with the power of molecular clock methods.
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2 Results

2.1 Inferring Asymmetry Using Codon Models

We simulated data sets of sequences according to the tree in Fig. 1a. Our simu-
lation assumes that an outgroup sequence can be unambiguously identified that
diverged from the duplicate pair not long prior to duplication (assuming a molec-
ular clock, the time between the duplication and root of the tree is one quarter of
the time between the duplication and the tips). The length (number of codons)
of the sequence alignments and the overall length of the tree were matched with
the mean value obtained from a set of Arabidopsis duplicated gene pairs (see
Methods). Codon models of substitution [14] implemented in the PAML pack-
age [15] allow for variation in ω among lineages. For every simulated alignment
we compared the likelihood of a model in which the lineages leading to the du-
plicated genes were constrained to have the same value of ω (ω2 = ω3 in Fig. 1a)
to the likelihood of a model which was not subject to this constraint. We found
that the power to detect modest differences in the selective constraint acting on
one copy of a duplicated gene pair was very low. For example, if every duplicated
pair of genes in a dataset was evolving with 1.5-fold asymmetry (see Methods)
then we would expect to detect this asymmetry in 15% of cases (Fig. 2). Because
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Fig. 2. Power to detect asymmetric divergence using the codon and clock methods.
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Fig. 3. Power to detect asymmetric divergence using the clock models for a range of

different tree lengths. Asymmetric divergence was simulated using trees of length 30,

10, 5, 2 and 0.5 substitutions per codon.

the method we applied makes use of a 5% significance level we would need to
assume that a significant proportion of the detected cases could have been the
result of chance. Power to detect asymmetric divergence increases with the de-
gree of asymmetry but does not begin to approach 100% in our simulations until
we reach six-fold asymmetry (i.e. the ratio of nonsynonymous to synonymous
substitution rates is six times greater in one copy than in the other).

The total tree length in the above simulations was two substitutions per
codon. We simulated data sets with varying tree length to test whether our
failure to detect modest asymmetric divergence was the result of a tree length
which was too large (e.g. synonymous saturation on the branch leading to the
outgroup sequence) or too small (insufficient time since the divergence of the
duplicate pair for the asymmetry to be detected). Power to detect the asymmetry
was very robust to tree length for a wide range of tree lengths (data not shown).

2.2 Inferring Asymmetry Using a Local Molecular Clock

Using the same simulated data sets described above we estimated the power
of molecular-clock methods to detect asymmetric divergence in triplets of se-
quences. In this case we compared the likelihood of a model of evolution in which
duplicated pairs of amino acid sequences evolve according to a local molecular
clock to the likelihood of a model in which there was no molecular clock (see,
for example Blanc and Wolfe [11]). Although the power of this method to detect
modest asymmetry is still low, we found that it has far greater power than meth-
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ods that are based on the ratio of nonsynonymous to synonymous substitution
(Fig. 2). Again the method is quite robust to variation in the tree length (Fig. 3).
Our simulations suggest that the tree lengths of the Arabidopsis duplicates and
cotton outgroup (mean of 2 substitutions per codon) are close to the ideal length
for detecting asymmetric divergence (Fig. 3). From approximately 3-fold asym-
metry this method approaches 100% power with tree lengths in the same range
as the real data, even though the codon based methods continue to miss some
cases of asymmetric divergence. Although potentially more powerful than meth-
ods based on ω this method is also subject to false positives due to differences
in mutation rate. Mutation rates are thought to vary substantially between ge-
nomic regions [9,16]. If one copy of the gene is located in a region of the genome
with a higher mutation rate then it may have diverged much more than the
other even if they are evolving under similar selective constraints. However, in
this case, the increased rate of evolution in one copy does not necessarily indicate
asymmetric functional divergence. Differing mutation rates between duplicates
can even, under certain circumstances, contribute to long-term maintenance of
genetic redundancy [17]. With both the clock-based method and the method
based on ω we obtained approximately 5% false positive results, using a signifi-
cance threshold of 5%. However, in real datasets false positive inference will also
be affected by incorrect outgroup assignment and different mutation rates. We
did not attempt to model these effects.

2.3 Asymmetric Divergence of Duplicated Genes from Arabidopsis

We obtained triplets consisting of Arabidopsis genes duplicated in the most re-
cent round of genome duplication [18–20] and outgroup sequences from cotton
(Gossypium hirsutum), which diverged from Arabidopsis prior to this genome
duplication event [18,20]. We used this dataset (rather than the larger dataset of
Blanc and Wolfe [11]) because it allowed us to have a similar outgroup for every
duplicated pair. The distance from the outgroup may affect the power to detect
asymmetric divergence [10]. From a total of 231 alignments we observed just 17
with asymmetric divergence of the duplicated genes, using the codon method
and a significance level of 5%. Given the cut-off we applied we would expect
approximately twelve false results from 231 tests and the observed number is,
in fact, not significantly greater than this (p = 0.15, considering both tails of
the binomial distribution). The proportion of asymmetric pairs that we detected
in our Arabidopsis data set using the codon methods is significantly less than
the frequency of asymmetric divergence observed in a set of much more ancient
duplicated genes from yeast based on amino acid sequence divergence (72 from
457 [8]; p = 0.002) and less than the minimum proportion (20%) of asymmetric
duplicate pairs observed in four yeast and animal species by Conant and Wagner
[10] using a method designed to detect differences in nonsynonymous divergence
of duplicates (p = 1x10−6). It is also significantly below the estimate derived by
Blanc and Wolfe [21] (173 out of 833, or 20.1%, p = 1x10−6) using a local molec-
ular clock for amino acid sequences. Some previous studies have found an equally
low proportion of asymmetric pairs (e.g. 5% asymmetric duplicates reported by
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Kondrashov et al. using a relative rate test on amino acid sequences [2]). Using
the local amino acid molecular clock we detected 44 putative examples of asym-
metric divergence (19%) among the Arabidopsis pairs, which is consistent with
the proportion reported by Blanc and Wolfe [21] using a similar method. How-
ever, many of these examples could result from incorrect outgroup sequences
or higher mutation rate and need not necessarily be indicative of asymmetric
functional divergence or relaxed constraint on one of the copies (see Discussion).

3 Discussion

Individual examples of asymmetric evolution at the protein sequence level can
provide important information about functional divergence of duplicated pairs
of genes. Typically we would expect that the less diverged copy performs a
function similar to the ancestral gene and that the more divergent copy either
has reduced or novel functionality. In this context we are interested in the rate
of change at the amino acid level. However, this rate of change can be affected
by different mutation rates in different genomic regions. In contrast, the ratio of
nonsynonymous to synonymous substitution rates (ω) provides a useful measure
of selective constraint which is far less affected by differing mutation rates. The
codon-based method that we investigate here tests whether duplicated genes
evolve under asymmetric selective constraints. This asymmetric selection could
result from a reduction in selective constraint and a more neutral pattern of
evolution, or from positive selection acting on one copy of the gene [10].

Our results using simulated data reveal very low power to detect asymmetric
evolution in duplicated genes of typical length with both methods tested, but
particularly for the codon method. The power is clearly a function of the mag-
nitude of the effect that we are trying to find and of the length of the sequence,
but for modest effects (e.g. two-fold asymmetry) and average sequence lengths
we are likely to fail to detect most cases using the methods investigated here
(Fig. 2). In our simulations we used a single value of ω across all sites. In real
data ω actually varies strongly across sites and this could increase the difficulty
of detecting increases in the mean value of ω in one of the duplicates leading to
a further reduction in power to detect asymmetric divergence.

Both of the methods of detecting asymmetric paralogue divergence that we
investigated make use of a null hypothesis of equality (equal ω or equal rates
of amino acid divergence). For closely related gene pairs this null hypothesis
makes sense because if functional divergence is symmetric we would expect the
sequences to evolve initially under similar selective constraints. For more diver-
gent genes it becomes less clear that it makes sense to test against this null
hypothesis. In this case the default expectation is that the evolutionary con-
straints under which the genes evolve remain the same over very long periods of
time and the null hypothesis begins to resemble an assumption of a global molec-
ular clock for sequences that are not accelerated by duplication. This may be
a reasonable assumption for some proteins that perform core functions that do
not change even on the scale of hundreds of millions of years of evolution but for
many proteins this default expectation may not be justified. When asymmetric
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divergence is detected in very ancient duplicated pairs, how can we know that the
asymmetry is actually caused by duplication? Put differently, how can we know
that the departure from a common evolutionary rate is greater than occurs for
most pairs of genes (for example unduplicated genes in different species)? This
is normally not what is tested. In theory, we could test this by testing for dif-
ferent values of ω in a paralogue compared to an unduplicated orthologue but
unfortunately mean values of ω may differ between species, for example because
of differences in effective population sizes or demographic history.

The codon method as applied here to pairs of Arabidopsis duplicates combines
some of the advantages of previous methods. Because we have used positional in-
formation as well as sequence information to identify triplets of duplicated genes
and orthologues, we are unlikely to have a high proportion of incorrect outgroup
sequences in the dataset and because the method uses an unrooted tree, the
consequences of incorrect choice of outgroup are not as severe as with methods
that require a rooted tree. We report a surprisingly low number of asymmetric
duplicates among Arabidopsis paralogues from the most recent round of genome
duplication using this method (not significantly greater than the number we
would expect to find by chance if there are no asymmetric pairs). Using the
clock based method applied by Blanc and Wolfe [11] we found 44 asymmetric
pairs (19%), significantly more than with the codon based method. This should
not be surprising since our simulations reveal that the codon-based methods
have lower power than clock-based (relative rate) methods, possibly due to high
uncertainty in the estimates of the denominator of ω.

Clock-based methods provide increased power at the cost of increased risk of
false positive inference, however, because a positive result on the clock method
(using nucleotide or amino acid sequences) could result from incorrect choice of
outgroup or from different mutation rates in different genomic regions. From the
44 asymmetric pairs that we detected using the clock method eight had values
of ω that were actually higher in the less divergent paralogue than in the more
divergent one. These cases of asymmetry, at least, seem unlikely to be the result
of reduced selective constraints or positive selection to evolve novel functionality
in the more divergent paralogue. In general, comparing ω between the branches
leading to the duplicates may provide a useful check on asymmetry detected
using clock-based methods.

Power to detect asymmetric divergence is clearly also a function of sequence
length. Relatively small increases in ω could be detected provided sequences are
sufficiently long. For example, we found that power to detect 1.5-fold asymmetry
using the codon method was approximately 40% with sequences 1,000 codons in
length and 100% with sequences of 10,000 codons (data not shown). In general,
power to detect cases of moderate asymmetry will depend on the ability to iden-
tify appropriate outgroup sequences with very high accuracy (so that clock-based
methods can be used) and will remain low for shorter sequences. Attributing de-
tectable asymmetry to duplication, especially for very ancient duplicates, will
require more progress on the null expectation of how rates of divergence change
over time in the absence of duplication.
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4 Methods

4.1 Simulations

The evolverNSbranches program from the PAML package [15] was used to sim-
ulate outgroup sequences and duplicated pairs. The tree and relative lengths of
branches in the simulations are shown in Fig. 1a. In the simulations the rate
ratio of nonsynonymous to synonymous substitutions (ω) was the only param-
eter to change between the affected (i.e. accelerated) and unaffected branches.
We define n-fold asymmetry as an increase by a factor of n in the value of ω
along the branch leading to one of the paralogous sequences. Because increasing
ω along a particular branch increases the relative length of the branch (given
no change in the synonymous rate) we recalculated the relative lengths of the
affected and unaffected branches for each value of n that was tested. A total
of 1,000 data sets were simulated for each parameter value. The sequences were
250 codons in length and all sense codons occurred with equal frequency. We did
not vary ω across sites.

4.2 Inferring Asymmetry

Two methods to detect asymmetrically evolving paralogues were evaluated. Both
methods were implemented using the codeml programme from the PAML pack-
age [15]. In the codon-based method, the likelihood of a model in which ω was
constrained to be the same between the duplicated lineages (ω2 = ω3 in Fig. 1a)
was compared to the likelihood of a model in which ω was estimated separately
for each branch. Twice the difference in the logarithm of the likelihoods between
the more general model (with three ω parameters) and the more specific model
(with two ω parameters) was compared to a χ2 distribution with one degree of
freedom and the more specific model was rejected at the 5% significance level.
The second method was used previously by Blanc and Wolfe to detect asymmet-
ric Arabidopsis pairs [11]. This method uses amino acid (or translated codon)
sequences. Similarly to the previous method likelihoods are compared between
a general model in which the rates of amino acid replacement are free to vary
across all branches and a special case of this model in which a local molecular
clock constrains the duplicated pair to evolve at the same rate.

5 Data

Arabidopsis gene sequences and complete tentative consensus (TC) sequences
[22] from 12,005 cotton genes were downloaded from TIGR (ftp://ftp.tigr.org/
pub/data/a thaliana/ath1/SEQUENCES/ and ftp://ftp.tigr.org/pub/data/tgi/
Gossypium/, respectively). TCs were annotated as complete if they were consid-
ered to cover at least 98% of the corresponding protein sequence. A list of Ara-
bidopsis genes that were duplicated in the most recent genome duplication event
was downloaded from the supplementary material of Bowers et al. [20]. Triplets
of Arabidopsis pairs and outgroup sequences from cotton were constructed by
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searching the cotton TCs against the complete set of Arabidopsis transcript
sequences using BLASTN [23]. Cotton coding sequences were identified by com-
parison with Arabidopsis proteins using GeneWise [24] and inframe alignments
of coding sequences were constructed using ClustalW [25] and Tranalign from
the Emboss package [26]. Only triplets with at least 50 aligned amino acids were
retained, resulting in 231 in-frame alignments. We tested all triplets for satu-
ration of synonymous substitutions by comparing the likelihood of a model in
which ω was constrained to be equal to a low value (0.001) to the maximum
value of the likelihood when ω was unconstrained. We do not expect to reject
the simpler model if the synonymous substitutions are saturated. In the real
data the simpler model was rejected in every case.
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Abstract. Gene rearrangements have been used successfully in phylogenetic re-
construction and comparative genomics, but usually under the assumption that
all genomes have the same gene content and that no gene is duplicated. While
these assumptions allow one to work with organellar genomes, they are too re-
strictive for nuclear genomes. The main challenge in handling more realistic data
is how to deal with gene families, specifically, how to identify orthologs. While
searching for orthologies is a common task in computational biology, it is usually
done using sequence data. Sankoff first addressed the problem in 1999, introduc-
ing the notion of exemplar, but his approach uses an NP-hard optimization step
to discard all but one member (the exemplar) of each gene family, losing much
valuable information in the process. We approach the problem using all available
data in the gene orders and gene families, provide an optimization framework in
which to phrase the problem, and present some preliminary theoretical results.

1 Introduction

Gene rearrangements have been used in phylogenetic reconstruction and comparative
genomics (see, e.g., [17,23]), but usually under the assumption that all genomes have
the same gene content and that no gene is duplicated. These assumptions allow one to
work with organellar genomes [2–5, 9, 10, 15, 21, 26], but are too restrictive for nuclear
genomes [11], where the main challenge is how to deal with gene families, specifically,
how to identify orthologs.

While searching for orthologies is a common task in computational biology, it is
usually done using sequence data; we approach that problem using gene rearrangement
data. Sankoff [19] first addressed this problem, proposing to identify within each gene
family an exemplar (a single gene, presumably the “original” one within that family)
and to discard all other homologs, thereby reducing the problem to one in which no gene
is duplicated. He further proposed that, for a pair of genomes, the exemplars should be
selected so as to minimize the distance (measured in terms of breakpoints or inversions)
between the two reduced genomes. One problem with this approach is that identifying
the exemplars is itself NP-hard, even when one genome contains no duplicate genes
[6]; another is that, by discarding all homologs, much valuable information is lost. (The
different numbers and arrangements of homologs need to be explained with a suitable
sequence of duplications, losses, and inversions, none of which appears in the exemplar
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framework.) Nguyen et al. [18] proposed a divide-and-conquer approach to compute
an exemplar-based distance between two genomes in reasonable time.

Sankoff et al. [22] also proposed a simple heuristic based on breakpoints [20] that
adds new genes incrementally at random; that heuristic performed well on a small
collection of mitochondrial genomes with widely divergent contents. However, that
method cannot handle duplications, only deletions and nonduplicating insertions; it is
thus well suited to organellar genomes, but not to nuclear genomes, where large gene
families are common. El-Mabrouk later gave an exact solution for that problem (but
with respect to inversion distances), as well as a bounded-ratio approximation when
both deletions and non-duplicating insertions are allowed [12]. She also developed an
approach, based on her earlier work with doubled genomes, that uses both inversions
and duplications [13]. Our group provided an alternate approach in which a correspon-
dence is established between gene families on the basis of conserved segments [16,25]
before completing the sequence using El-Mabrouk’s algorithm; our results suggested
that considering all members of a gene family yields better results than keeping only
exemplars, but were limited in that the assignment of orthologs did not take into ac-
count any rearrangement structure beyond conserved segments. Chen et al. [8] gave a
first attempt at using rearrangements and keeping more than just exemplars.

In this paper, we extend these approaches by providing an optimization framework
derived from the breakpoint graph (the structure behind the last decade of work in gene
rearrangements [14]) in which to phrase the problem; we give preliminary theoretical
results in support of our framework.

2 Preliminaries

We are given a set of gene families S (the set of “names” of the gene families) and two
genomes, G1 and G2. Each genome is represented as a (linear or circular) sequence of
elements of S (an element may occur zero, one, or many times within the sequence),
each with an associated sign (which denotes which strand the gene lies on). In this for-
mulation, each genome consists of a single chromosome; however, the unichromoso-
mal version embodies the heart of the orthology assignment problem and, as shown by
Tesler [27] in the context of equal gene contents, a multichromosomal version does not
introduce insurmountable problems. The problem is to find the shortest edit sequence,
that is, the shortest sequence of evolutionary events that transforms one genome into
the other. Permitted evolutionary events in this setting are inversions, which take a sub-
sequence of genes and reverse it in place (in both order and signs), deletions, and inser-
tions (including duplications). These events all operate on consecutive subsequences of
genes: that is, we assume that the cost of deleting, inserting, or making one duplicate of,
one gene is the same as that of deleting or inserting (including duplicating insertions) a
contiguous segment of k genes, for any k ≥ 1.

In absence of other constraints, the edit distance between any two genomes is then
bounded by 2: simply delete the entire genome in one operation of unit cost, then insert
the entire new genome in another operation of unit cost. Since this scenario is patently
absurd in biological terms, we impose a simple parsimony constraint on any editing
scenario: if G1 has a family of k1 genes and G2 a homologous family of k2 genes, with
k1 ≥ k2, then none of the k2 genes in G2’s family may be inserted in the edit sequence
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from G1 to G2: instead, we must identify within G1’s family of k1 genes a distinct or-
tholog for each of the k2 genes in G2’s family. The k1 −k2 unmatched homologs in G1’s
family will then be deleted in the edit sequence. Once that orthology identification has
been made, the algorithms of El-Mabrouk [12] and of our group [11,26] can complete
the work of finding one or more parsimonious edit sequences.

A good choice of orthologies can reduce the required number of deletions and in-
sertions (or duplications) by inserting contiguous segments of many genes rather that
one gene at a time—although care must be taken not to do so at the expense of proper
placement within the ordering, lest many additional inversions be required to move in-
dividual genes to their final destination [16]. It can also reduce the number of required
inversions by grouping genes properly: this is the focus of the cover-based methods
[8,16,25].

We shall rely on the fact that every gene that appears as a singleton in both genomes
has a direct assignment and that these singleton genes must all be sorted through in-
versions: because we know how to sort by inversions [1,14], the presence of singleton
genes creates a structural context in which to study orthology assignment [19].

We assume, without loss of generality, that gene families present in one genome but
not the other have been removed—these families do not affect orthology assignment and
the insertion of the unique genes can easily be handled by El Mabrouk’s algorithm. We
describe the framework for the general case, but, for the sake of clarity in presentation,
we shall frequently restrict genome G2 to contain no duplicate genes, in which case our
framework becomes a special case of the exemplar problem. Finally, when using G2

with no duplicate genes, we assume that the remaining genes have been indexed from
1 to n so as to turn G2 into the identity permutation 12 . . .n. (As is customary, we will
prepend a marker 0+ and append another marker n + 1− to both genomes.)

3 Background and Definitions

3.1 The Breakpoint Graph

The basic structure describing a pair of genomes with no duplicates and equal gene
content is the breakpoint graph (really a multigraph)—for a readable description of its
construction, see [24]. In our case, however, gene families need not be singletons, so
we modify the construction to include only singleton gene families. Let BG1,2 denote
the breakpoint graph for G1 and G2; As in the normal breakpoint graph, each singleton
gene g becomes a pair of vertices, g− and g+ (the “negative” and “positive” terminals);
however, we leave out the gene families with multiple members, since only the single-
tons have a readily usable structure. We need to accommodate gaps left in the sequence
where duplicate genes exist in G1. Call the versions of G1 and G2 without multigene
families G′

1 and G′
2 respectively. We add an edge (a desire edge, in the charming termi-

nology of [24], but also known elsewhere as a gray edge) (a−,b+) for each singleton a
and b, whenever a occurs immediately to the left of b in G′

2. We add a reality edge (also
known elsewhere as a black edge) (ap,bq) if a is the element to the left of b in G′

1 and
we have either p = q if a and b have different parities (in G′

1, naturally) or p �= q if a
and b have the same parity. Thus desire edges trace the (re-)ordering of G1 that we need
to achieve to match G2, while reality edges trace the given ordering of G1. Figure 1
illustrates the construction.
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G1 = 4 -3 2 3 1 6 9 3 8 -10 -7 9

(a) the genome G1

Cycle A

Component 1

Cycle B

Component 2

Cycle C

= 2 1 84 60 −7 11

= 2 4 71 60 11

−10

108

0+ 1− 1+2− 2+4− 4+ 6− 6+ 7−7+8− 8+ 10+ 10− 11−

G′
1

G′
2

(b) the breakpoint graph BG1,2

Fig. 1. A genome G1 and its associated breakpoint graph BG1,2 (with respect to the identity
permutation G2) after removing gene families with duplicates (3 and 9); desire edges are shown
in gray, reality edges in black

Hannenhalli and Pevzner proved that the inversion distance equals the number of
genes minus the number of cycles in the breakpoint graph, plus some corrective factors
(hurdles and a fortress). Researchers have found that hurdles are very rare in real data
(a finding confirmed in a theorem under some restrictive assumptions [7]), so we focus
on selecting an orthology assignment that maximizes the number of cycles.

3.2 The Consequences of An Assignment

Our job of assigning orthologs may be compared to that of reshelving books in a li-
brary with unlabelled shelves. Each book has a proper location on a shelf and multiple
copies of a book must be shelved together. A librarian can proceed by first removing
misshelved books and then identifying the appropriate location of each book based on
the context of the books that remain in their correct spot.

In our problem each multigene family has been removed from the ordering, leav-
ing a structure of cycles defined by singleton genes. We call each gene in a multigene
family of G2 a candidate, since it is one of the choices for an orthology assignment to a
corresponding gene in G2. Like each book in the library, each candidate has a location
between two remaining elements in G′

2; each family, like each group of book copies,
contains candidates that all share the same location between elements of G′

2. For each
candidate d, denote by β+(d) the positive terminal of the next smaller (in value) ele-
ment in BG1,2 and by β−(d) the negative terminal of the next larger element. We call
these nodes the bookends of d and the cycle on which they reside the shelf of d. For
instance, in Figure 1, the bookends for the family of gene 3 (a family of 3 members) are
2+ and 4− and therefore the shelf for the family of 3s is cycle A. Although the defini-
tion of bookends applies equally well to singletons, we are only interested in bookends
for candidates: bookends are part of the breakpoint graph, but candidates are not, since
multigene families do not appear in the breakpoint graph.

Once we have chosen a candidate, the candidate and its matching gene in G2 effec-
tively form a singleton gene family, so we can add the candidate to the breakpoint graph
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of G1. The consequences of that choice are summarized in the following easy lemma,
which underlies many of our results.

Lemma 1. When a candidate d is chosen, exactly two edges are affected: the reality
edge that spans the location where d is added and the edge between its bookends.

Proof. Refer to Figure 2. Adding d to BG1,2 splits the reality edge that spans the loca-
tion where d is added, creating two new endpoints d+ and d−, as well as splitting the
desire edge that links β+(d) and β−(d) to meet each of d+ and d−.

add d
β+(d) β−(d) d+ d− β+(d) β−(d)

add d
β+(d)β−(d)

d+ d− β+(d)β−(d)

(a) a subgraph of BG1,2 before
adding d; the dashed line is the
desire edge that will be split

(b) the two possibilities after adding d

Fig. 2. Adding an element d to a breakpoint graph

We say that a candidate d is added on-cycle if, once added, it lies on its own shelf;
otherwise it is added off-cycle. The following is an immediate consequence of Lemma 1.

Lemma 2. When a candidate is added off-cycle, two cycles get joined.

3.3 The Cycle Splitting Problem

We can formulate orthology assignment as an optimization problem: choose an assign-
ment of orthologs that maximizes the number of cycles in the resulting breakpoint graph
(i.e. BG1,2, to which the chosen candidates have been added). Note that the order in
which the chosen candidates are added does not affect the structure of the resulting
breakpoint graph.

Consider cycle C in Figure 1. This cycle is associated with the gene segment (6,9,8,
−10,−7,9,11), which contains two occurrences of gene 9; thus we must choose which
of these two occurrences to call the ortholog of gene 9 in G2. Figure 3 shows the aug-
mented breakpoint graphs resulting from each choice of candidate. The graph on the
left, where we chose the candidate between 6 and 8, has one more cycle than the graph
on the right, where we chose the candidate between −7 and 11, and is thus the better
choice.

The choice of a candidate is advantageously viewed on a breakpoint graph inscribed
in a series of circles, one for each cycle in the graph. We embed each cycle of BG1,2 in
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118 −7−10
10+ 10− 11−

9
8+8−9+9−

6
6+ 7+ 7− 7+ 7− 9− 9+ 11−6+

−10 9−7 116 8
8+8− 10−10+

Fig. 3. The breakpoint graphs for the two candidates for gene 9 on cycle C

0+
4−

2+

1−

2−

1+

4+

6−
8+

11−

8−

7−

7+

6+

10+

10−

Cycle CCycle B

Cycle A

Fig. 4. The breakpoint graph of Figure 1 inscribed in three circles (cycle D is not shown)

7+

8+

11−

7−

8−

7+

11−

6+

10−

10+

9−

6+

9+
8−

9+
9−

7− 10+

8+

10−

7+

11−

8−

7−

6+

10−

10+

8+

(a) the graphs of Figure 3 inscribed in circles (b) the two choices of
part (a) superimposed

Fig. 5. How the cycle splitting problem can be inscribed in a single circle

a circle by choosing any start vertex and then following the cycle. Figure 4 shows three
of the four cycles of Figure 1 inscribed in three circles. Returning to the two possible
orthology assignments shown in Figure 3, we can look at the inscribed versions of
these graphs, as illustrated in Figure 5(a). Choosing candidates adds edges across the
circle, edges that may cross each other, depending on the parity of the candidates and
the locations of their bookends. The effects on the graph can be represented in just one
graphical representation, as shown in Figure 5(b). In this representation, we denote the
two choices by drawing two curved line segments, both originating on the perimeter
between the bookends 10− and 8+ and each ending between the two terminals of the
corresponding candidate. Choosing the candidate between 6+ and 8− gives rise to desire
edges that do not cross in the inscribed representation; we represent such choices with
solid lines. The other candidate, between 7− and 11−, does give rise to crossing desire
edges; we represent such choices with dashed lines.

These curved lines represent assignment operations; we will call an operation rep-
resented by a solid line a straight operation (because it does not introduce crossings)
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and one represented by a dashed line a cross operation. The collection of all operations
that share an endpoint represents all members of a gene family from G1, so we also call
it a family and call its common endpoint (between the bookends and represented by a
large disk in the figures) the family home. We can now state the three constraints for our
optimization problem:

1: Each family home is a distinct point on the circle.
2: The family home is not the endpoint of any operation not in that family.
3: The other endpoint of each operation is unique to that operation.

The objective to be maximized is the number of cycles. Figure 6 shows the operations
for each of the gene families from our running example. Operations that cross cycles
are off-cycle and therefore will join cycles.

0+
4−

2+

1−

2−

1+

4+

6−
8+

11−

8−

7−

7+

6+

10+

10−

3 9

Fig. 6. The operations that represent the gene families for our running example

(a) a many-to-one instance (b) a many-to-many instance

Fig. 7. A single cycle for the simplified case (left) and the general one (right)

Figure 7 shows a single cycle and its operations for the simplified (“many-to-one”)
case where G2 has only singletons and for the general (“many-to-many”) case where
both G1 and G2 have multigene families. (The case where two multigene families have
the same bookends can be handled because the relative location of the bookends does
not change.) In the general case we have multiple homes per family, with one additional
constraint:

4: Each home in the same family must connect to all of the same endpoints.
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c c
3 4

5 6

1
2

7 8

56
4

7 8
2 1

3

(a) drawn on the
circle as usual

(b) zooming in on
each operation

(c) after applying
cross operation c

(d) result redrawn
on the circle

Fig. 8. Illustration for Theorem 1. Labels for the points along the circle are numbered.

1

2 3

4

c

1 4

23

(a) before application (b) after application

Fig. 9. Applying cross operation c

The problem thus becomes picking as many operations as there are homes per family
such that the cycle count is maximized. The only additional complication is that apply-
ing an operation removes that operation from consideration in all other homes for its
family (as required by the fourth constraint).

Straight and cross operations display a form of duality that allows us to focus on
straight operations alone.

Theorem 1. Applying a cross operation c converts all operations that intersect c (call
the set of such operations I) to their complement—crosses are replaced by straights and
straights by crosses. Furthermore, for any two operations in I, if they intersected before
applying c, then they no longer do after applying c, and vice versa.

Proof. We sketch the proof graphically, using Figure 8, a typical situation where three
operations, two of which are crosses and one a straight, overlap each other. The cross
operation shown in parts (a) and (b) twists, but does not break the cycle, as shown in
part (c). If we redraw the cycle inscribed neatly in a circle, we find we must reverse the
indices on half of the cycle; Figure 8(d) shows the result after reversing indices on the
bottom half of the cycle. Previously intersecting operations no longer intersect and the
identities of the operations have been inverted.

Figure 9 shows the implications of Theorem 1 in a more complicated setting.

4 Theoretical Results

4.1 Buried Operations

An operation makes no contribution to the cycle count of a complete assignment if
the two new desire edges it creates lie on the same cycle. In Figure 10, the choices of
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candidates for the gene families are indicated in the breakpoint graph on the left and
shown as operations in the inscribed representation on the right.

5−3
5−3−3+ 1− 1+5+

1
2 −4−6

0+ 7−

5−

3−3+

1−

5+

1+

2

−4

7−

0+

−6

(a) the breakpoint graph (b) the inscribed version of BG1,2

Fig. 10. An example with G1 = 2,−3,4,−6,5,−4,−2,6,1. Chosen duplicates are shown in grey.

In Figure 11, we show again the three operations depicted in Figure 10(b), but this
time only the three operations and the resulting two cycles are shown. Note the op-
eration corresponding to gene family 2 (shown as a heavy curve): the curved edge is
bounded on each side by the same cycle; we say that such an operation is buried (for
the given choice of candidates). Since the two desire edges created by this operation lie
on the same cycle, the operation does not increase the number of cycles (in fact, in this
particular example, it reduces the number of cycles, which stood at 3 after operations
−6 and −4).

Fig. 11. The cycle and the operations; operation “2” (the heavy curve) is buried

Theorem 2. If an orthology assignment creates a total of b buried edges, then the num-
ber of cycles is bounded by a− b + 1, where a is the number of cycles present in the
breakpoint graph induced by the shared singleton genes plus the total number of or-
thology assignments to be made.

Proof. The number of cycles cannot exceed a + 1, since each orthology assignment
can give rise to at most one new cycle. Consider the effect on the breakpoint graph
of choosing an operation: a single desire edge d is replaced with two desire edges d′

1
and d′

2, and a single reality edge r is replaced with two reality edges r′1 and r′2. By
construction, d′

1 and d′
2 each inherit one of the original endpoints of d; similarly, r′1

and r′2 each inherit one of the original endpoints of r. By assumption, the chosen edge
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is buried, so that d′
1 and d′

2 lie on the same cycle; therefore so do all of the original
endpoints of d and r. Thus all of the newly created edges must lie on a cycle that already
existed. Since this is true of any buried operation, every one of the buried operations
decreases by one the maximum number of attainable cycles.

4.2 Chains and Stars

We have discovered two operation patterns that, while they need not contain buried
operations, nevertheless impose sharp bounds on the number of cycles. A k-chain (for
k ≥ 3) is an assignment in which k operations form a chain, that is, each chosen opera-
tion overlaps two of the other k, its predecessor and successor around the circle. Figure
12(a,b) illustrates k-chains. A k-star (for k ≥ 1) is an assignment in which k operations
form a clique (each overlaps every other). Figure 12(c,d) illustrates k-stars.

(a) a 4-chain (b) a 5-chain (c) a 3-star (d) a 4-star

Fig. 12. Some examples of stars and chains

Proposition 1. For any integer k ≥ 1 (but recall that k-chains are only defined for k ≥
3), we have:

1. a k-chain has no buried operations;
2. in a k-chain with k odd, the cycle count is 2;
3. in a k-chain with k even, the cycle count is 3;
4. in a k-star with k even, every operation is buried and the cycle count is 1;
5. in a k-star with k odd, no operation is buried and the cycle count is 2.

We conjecture that these two patterns, along with buried operations, describe all opera-
tions that reduce the upper bounds on the number of cycles.

4.3 Reduced Forms

A serial assignment procedure could reach a state in which no operation remains that
could split a cycle. We call such a state a reduced form of the instance. In a reduced
form, an instance is composed of multiple cycles linked by the operations from the
remaining families. This structure lends itself naturally to a graph representation; an
analysis of this graph reveals conditions under which optimality can be characterized.

Theorem 3. After applying a maximal nonoverlapping set of operations M, remaining
operations can only (by themselves) join two cycles.
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1 2 3 5 6 74

1

3

6

72 4

5

(a) operations indicated by heavy lines
(and arrows) are those chosen to
produce the reduced form of part (b)

(b) the resulting reduced instance;
heavy edges will produce an optimal
solution to the reduced instance

Fig. 13. Creating a reduced instance and solving it

(a) the effect of applying
an operation between
two circles

(b) a reduced form:
lines trace the cycles
created by the operations

(c) adding a nonplanar
operation to the reduced form
from (b) joins the cycles

Fig. 14. The effect of choosing operations on a reduced form

Proof. Applying a set of k nonoverlapping operations yields k new cycles, each sepa-
rated from the others by two adjacent operations or, in the case of an outermost cycle,
by one operation from all others. Since M is maximal, every remaining operation from
every family overlaps an element of M. Application of any m ∈ M, therefore, must span
two of the new cycles, joining them into one.

Figure 13(b) shows the reduced instance induced by applying each of the (straight)
operations chosen in Figure 13(a). We are left with a reduced form that can be viewed
as a graph on the cycles so far; however, because that graph is embedded in the plane,
the edges incident on a vertex are strictly ordered.

We can now take advantage of graph properties such as planarity, cycles, and con-
nected components. Because of the ordered nature of the edges incident upon a given
vertex, planarity is somewhat specialized in our case: nonplanar edges can occur in sim-
pler situations than in general graphs, as shown in Figure 14(c). Cycles again play a
vital role in these new graphs. If we restrict our attention to planar graphs, we can look
at the elementary cycles (those that delimit an inside face of the planar embedding) and
obtain directly the value of an optimal solution. As shown in Figure 14, each connected
component produces a cycle around its outer hull (one of the cycles for the outer face of
the planar graph). Each elementary cycle yields another cycle to its inside. Figure 14(c)
shows how nonplanar edges can join these two cycles.
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1

3

6

72 4

5

1 2 3 5 6 74

(a) the solution embedded through
a reduced form

(b) the solution embedded on the circle

Fig. 15. An optimal solution to the reduced instance in Figure 13

Theorem 4. The number of cycles in a solution S to a planar reduced instance with m
elementary cycles and c connected components is R(S) = m+ c.

Proof. This certainly holds for a reduced instance with no operations. Assume R(S) =
m + c for a current solution and look at the effect of adding another edge. If that edge
links two previously disconnected components, then the cycles around the hulls of these
components will get merged, removing a cycle and a connected component. If that edge
links two connected components, then an elementary cycle will be created. Since the
edge added is planar, we know that the same cycle runs past both endpoints of the
operations and thus the operation will split it.

It remains to relate results on reduced forms back to the original inscribed break-
point graph formulation; we illustrate the process in Figure 15, where the left part shows
the solution obtained on a reduced form and the right part shows the corresponding so-
lution inscribed in the circle.

5 Conclusion

We have described a graph-theoretical framework in which to represent and reason
about orthology assignments and their effect on the number of cycles present in the
resulting breakpoint graph. We have given some foundational results about this frame-
work, including several that point us directly to to algorithmic strategies for optimizing
this assignment. We believe that this framework will lead to a characterization of the
orthology assignment problem as well as to the development of practical algorithmic
solutions.

Note that research in orthology assignment based on rearrangement data does not
aim to replace assignment based on sequence data: instead, the two approaches comple-
ment each other. Biologists are already routinely using the notion of contiguous gene
blocks in their determination of orthology assignments: an assignment based on re-
arrangement data simply formalizes that insight. How to use both sequence data and
gene-rearrangement data within the same framework remains a tantalizing, but for now
elusive goal.
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